Isolation of lipase producing bacteria from olive extract to improve lipase production using a submerge fermentation technique

Document Type: Original research

Authors

Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran

Abstract

The tremendous mounting interest in lipase production is pertinent to the biotechnological applications that these enzymes offer. Lipase, belonging to the hydrolyze enzymes, is involved in copious biological functions including: hydrolysis insoluble triacylglycerol to mono and diacylglycerols and glycerol. Submerge fermentation technique was applied for the efficient production of this. Briefly, olive oil emulsified by Arabic gum (3% olive oil with 8% Arabic gum) and coriander seed extract (7%) were used as supplementation. Extract was isolated from the olive used to isolation lipase producing bacteria. Among the isolates, mesophilic OE3 strain was selected as the best lipase producing bacterium with high hydrolytic activities (663U/ml). From Rhodamin B, we applied agar plate technique to screen lipase production bacteria based on e formation of the fluorescence halo around the colony under radiation of UV. The isolate was short rod- and coccoid-like. The isolate was Gram-positive, aerobic, non-motile, non-endospore-forming, non-acid fast, oxidase-negative, and catalase-positive. The selected isolate was positive for H2S and indole production and urea hydrolysis; however, they could not reduce nitrates to nitrogen. The final achievement was a lipase activity 2645 U/ml after 48 h incubation in 37ºC.

Keywords


Abdel-Fattah, Y. R., Soliman, N. A., Yousef, S. M., & El-Helow, E. R. (2012). Application of experimental designs to optimize medium composition for production of thermostable lipase/esterase by Geobacillus thermodenitrificans AZ1. Journal of Genetic Engineering and Biotechnology10(2), 193-200.

Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource technology91(1), 77-84.

Carrière, F., Thirstrup, K., Hjorth, S., Ferrato, F., Nielsen, P. F., Withers-Martinez, C., ... & Verger, R. (1997). Pancreatic lipase structure− function relationships by domain exchange. Biochemistry36(1), 239-248.

Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., & Ros, R. O. (2005). Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology37(6), 648-654.

Chen, S. J., Cheng, C. Y., & Chen, T. L. (1998). Production of an alkaline lipase by Acinetobacter radioresistens. Journal of fermentation and bioengineering86(3), 308-312.

Colla, L. M., Rizzardi, J., Pinto, M. H., Reinehr, C. O., Bertolin, T. E., & Costa, J. A. V. (2010). Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresource technology101(21), 8308-8314.

Dheeman, D. S., Henehan, G. T., & Frías, J. M. (2011). Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis. Bioresource technology102(3), 3373-3379.

Dominguez, A., Costas, M., Longo, M. A., & Sanromán, A. (2003). A novel application of solid state culture: production of lipases by Yarrowia lipolyticaBiotechnology Letters25(15), 1225-1229.

Fadı́loğlu, S., & Erkmen, O. (2002). Inactivation of lipase by carbon dioxide under atmospheric pressure. Journal of food engineering52(4), 331-335.

Gharibzahedi, S. M. T., Razavi, S. H., & Mousavi, S. M. (2013). Ultrasound-assisted formation of the canthaxanthin emulsions stabilized by arabic and xanthan gums. Carbohydrate polymers96(1), 21-30.

Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s Manual of Determinative Bacteriology (9th edn.), Baltimore, Philadelphia, Hong Kong.

Hou, C. T., & Johnston, T. M. (1992). Screening of lipase activities with cultures from the agricultural research service culture collection. Journal of the American Oil Chemists’ Society69(11), 1088-1097.

Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications. Applied biochemistry and biotechnology118(1-3), 155-170.

Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Reviews in Microbiology53(1), 315-351.

Joseph, B., Ramteke, P. W., Thomas, G., & Shrivastava, N. (2007). Cold-active microbial lipases: a versatile tool for industrial applications. Biotechnology and Molecular Biology Reviews2(2), 39-48.

Joseph, B., Shrivastava, N., & Ramteke, P. W. (2012). Extracellular cold-active lipase of Microbacterium luteolum isolated from Gangotri glacier, western Himalaya: Isolation, partial purification and characterization. Journal of Genetic Engineering and Biotechnology10(1), 137-144.

Kempka, A. P., Lipke, N. L., Pinheiro, T. D. L. F., Menoncin, S., Treichel, H., Freire, D. M., ... & de Oliveira, D. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystems Engineering31(2), 119-125.

Liu, C. H., Chen, C. Y., Wang, Y. W., & Chang, J. S. (2011). Fermentation strategies for the production of lipase by an indigenous isolate Burkholderia sp. C20. Biochemical engineering journal58, 96-102.

Liu, C. H., Huang, C. C., Wang, Y. W., & Chang, J. S. (2012). Optimizing lipase production from isolated Burkholderia sp. Journal of the Taiwan Institute of Chemical Engineers43(4), 511-516.

Ruchi, G., Anshu, G., & Khare, S. K. (2008). Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresource technology99(11), 4796-4802.

Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology advances19(8), 627-662.

Silva, W. O. B., Mitidieri, S., Schrank, A., & Vainstein, M. H. (2005). Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliaeProcess Biochemistry40(1), 321-326.

Tayyab, M., N. Rashid and M. Akhtar (2011). Isolation and identification of lipase producing thermophilic Geobacillus sp SBS-4S: Cloning and characterization of the lipase. Journal of bioscience and bioengineering 111(3): 272-278.

Winkler, U. K., & Stuckmann, M. A. R. T. I. N. A. (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescensJournal of bacteriology138(3), 663-670.