Document Type : Original research


1 Department of Food Science and Technology, Saba Institute of Higher Education, Urmia, Iran

2 Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran


The present study provides an analysis of physicochemical, biochemical, and rheological properties of four types of monofloral honey: Ziziphus, Thymus, Astragalus, and Alfalfa. Physicochemical (palynology, moisture, pH, free acidity, insoluble solid, ash, conductivity, hue, and minerals), biochemical (sucrose, Hydroxymethylfurfural, diastase activity, antioxidant properties, total flavonoid, and total phenol) and rheological parameters were measured. The results of the palynology (pollen) test confirmed that the honey samples were monofloral. Hydroxymethylfurfural was 0.64±0.34 mg/kg for Ziziphus, 1.09±0.37 mg/kg for Thymus, 4.98±0.37 mg/kg for Astragalus, and 2.94±0.52 mg/kg for Alfalfa. The results showed that sucrose content for Ziziphus, Thymus, Astragalus, and Alfalfa was 0.89±0.34, 3.66±1.79, 2.17±1.10, and 4.14±0.97%, respectively. Diastase activity was 18.06±0.17 DN for Ziziphus, 16.36±2.08 DN for Thymus, 15.21±0.31 DN for Astragalus, and 2.94±0.09 DN for Alfalfa. Antioxidant activity was 13.64±3.34% for Ziziphus, 29.52±2.52% for Thymus, 29.51±3.30% for Astragalus, and 57.77±4.79% for Alfalfa. The results of the present study showed that monofloral honey samples in Iran have an appropriate level of sucrose and can be a good dietary option for people with diabetes. Moreover, total phenol and total flavonoid contents in our samples were lower than other types in other countries. DPPH free radical scavenging activity of our samples was comparable to other types and can be exported to other countries. The results showed that Iranian monofloral honey has the potential to compete with other countries’ honey in terms of quality and nutritional value.


Main Subjects

Adenekan, M. O., Amusa, N. A., Lawal, A. O., & Okpeze, V. E. (2010). Physico-chemical and microbiological properties of honey samples obtained from Ibadan. Journal of Microbiology and Antimicrobials, 2(8), 100-104.
Akbari, E., Baigbabaei, A., & Shahidi, M. (2020). Determination of the floral origin of honey based on its phenolic profile and physicochemical properties coupled with chemometrics. International Journal of Food Properties23(1), 506-519.
Ahmed, M., Djebli, N., Aissat, S., Khiati, B., Meslem, A., & Bacha, S. (2013). In vitro activity of natural honey alone and in combination with curcuma starch against Rhodotorula mucilaginosa in correlation with bioactive compounds and diastase activity. Asian Pacific journal of tropical biomedicine, 3(10), 816-821.
Amiry, S., Esmaiili, M., & Alizadeh, M. (2017). Classification of adulterated honeys by multivariate analysis. Food chemistry, 224, 390-397.
Amiri, S., Mokarram, R. R., Khiabani, M. S., Bari, M. R., & Khaledabad, M. A. (2019a). Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: optimization of fermentation variables and characterization of structure and bioactivities. International journal of biological macromolecules123, 752-765.
Amiri S, Rezayi mokarram R, Sowti Khiabani M, Rezazadeh Bari M, Alizadeh M. (2019b). Development of the antioxidant activity in cheese whey and milk permeate using Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12. FSCT. 16 (91) :65-79. URL:
AOAC. 2000. Official Methods of Analysis, 17th Ed., Association of Official Analytical Chemists, Inc., Arlington, VA.
Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., & Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering, 79(4), 1207-1213.
Buba, F., Gidado, A., & Shugaba, A. (2013). Analysis of biochemical composition of honey samples from North-East Nigeria. Biochemistry & Analytical Biochemistry, 2013.
Chirife, J., Zamora, M. C., & Motto, A. (2006). The correlation between water activity and moisture in honey: Fundamental aspects and application to Argentine honeys. Journal of Food Engineering, 72(3), 287-292.
Diez, M., Andres, C., Terrab, A. (2004). Physicochemical parameters and pollen analysis of Moroccan honeydew honeys. International Journal of Food Science and Technology, 39, 167–176.
Darvishzadeh, A. (2015). Effect of proline as a nutrient on hypopharyngeal glands during development of Apis mellifera (Hymenoptera: Apidae). Arthropods, 4(4), 137.
Daniel. D., Liviu Al. M., Moise. A., Bobis. O., Laslo. L., Bogdanov. S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry 112, 863–867.
Dżugan, M., Grabek-Lejko, D., Swacha, S., Tomczyk, M., Bednarska, S., & Kapusta, I. (2020). Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Bioscience34, 100538.
Emmertz, A. (2010). Mineral composition of New Zealand monofloral honeys.
Farooq, R., Majid, S., Hanif, A., Ashraf, A., & Khan, A. (2020). Different Types of Honey and Their Properties. In Therapeutic Applications of Honey and its Phytochemicals (pp. 261-278). Springer, Singapore.
Hasan, S. H. (2013). Effect of storage and processing temperature on honey quality. Journal of University of Babylon for Pure and Applied Sciences, 21(6), 2244–2253.
Hussein, S. Z., Yusoff, K. M., Makpol, S., & Yusof, Y. A. M. (2011). Antioxidant capacities and total phenolic contents increase with gamma irradiation in two types of Malaysian honey. Molecules, 16(8), 6378-6395.
Krpan, M., Marković, K., Šarić, G., Skoko, B., Hruškar, M., & Vahčić, N. (2009). Antioxidant activities and total phenolics af acacia honey. Czech journal of food sciences, 27(SI 1), S245–S247.
Manu Kumar, H. M., Ananda, A. P., & Vishwanathan, D. (2013). Study of Physicochemical parameters and Antioxidant in Honey collected from different locations of India. International Journal of Pharmacy & Life Sciences, 4(12), 3159–3165.
Moniruzzaman, M., Chowdhury, M. A. Z., Rahman, M. A., Sulaiman, S. A., & Gan, S. H. (2014). Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to Manuka honey. BioMed research international, 2014, 359890.
Meda, A., Lamien, C. E., Millogo, J., Romito. M., & Nacoulma, O. G. (2005). Physicochemical Analyses of Burkina Fasan Honey. Acta Veterinaria Brno, 74, 147-152.
Muli, E., Munguti, A., & Raina, S. K. (2007). Quality of honey harvested and processed using traditional methods in rural areas of Kenya. Acta Veterinaria Brno, 76(2), 315-320.
Moniruzzaman, M., Sulaiman, S. A., Khalil, M. I., & Gan, S. H. (2013). Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: a comparison with manuka honey. Chemistry Central Journal, 7(1), 1.
Moniruzzaman, M., Yung A. C., Rao, P. V., Hawlader, M. N. I., Azlan, S. A. B. M., Sulaiman, S. A., & Gan, S. H. (2014). Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: determination of antioxidant capacity. BioMed research international, 2014, 737490.
Nasrolahi, O., Amiry, S., Heidari, R. & Rahmani, F. (2013). Physicochemical properties of natural honey from Ilam and its effect on oxidative stress in streptozotocin-induced diabetic rats. 2nd National Congress on Medicinal Plants. May 2013, Tehran.
Owayss, A. A. (2005). Physicochemical analysis for standardizing quality criteria of Libyan Eucalyptus (Eucalyptus sp.) honey. Egyptian Journal of Applied Sciences, 20, 247-255.
Popek, S. (2002). A procedure to identify a honey type. Food Chemistry, 79(3), 401-406.
Serem. J. C., Bester. M. J. (2012). Physicochemical properties, antioxidant activity and cellular protective effects of honeys from southern Africa. Food Chemistry 133, 1544–1550.
Santos, F. K., Dantas Filho, A. N., Leite, R. H., Aroucha, E. M., Santos, A. G., & Oliveira, T. A. (2014). Rheological and some physicochemical characteristics of selected floral honeys from plants of caatinga. Anais da Academia Brasileira de Ciências, 86(2), 981-994.
Solayman, M., Islam, M., Paul, S., Ali, Y., Khalil, M., Alam, N., & Gan, S. H. (2016). Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 15(1), 219-233.
Sancho, M. T., Muniategui, S., Huidobro, J. F., & Simal, J. (1992). Evaluating soluble and insoluble ash, alkalinity of soluble and insoluble ash and total alkalinity of ash in honey using electrical conductivity measurements at 20 C. Apidologie, 23(4), 291-297.
Silva, L. R., Videira, R., Monteiro, A. P., Valentão, P., & Andrade, P. B. (2009). Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchemical Journal, 93(1), 73-77.
Terrab, A., Dıez, M. J., & Heredia, F. J. (2003). Palynological, physico-chemical and colour characterization of Moroccan honeys: III. Other unifloral honey types. International Journal of Food Science and Technology, 38, 395–402.
Tosi, E., Martinet, R., Ortega, M., Lucero, H., & Ré, E. (2008). Honey diastase activity modified by heating. Food chemistry, 106(3), 883-887.
Thrasyvoulou, A., & Manikis, J. (1995). Some physicochemical and microscopic characteristics of Greek unifloral honeys. Apidologie, 26, 441-452.
Terrab, A., Recamales, A. F., Hernanz, D., & Heredia, F. J. (2004). Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chemistry, 88(4), 537-542.
Vit, P., Rodríguez-Malaver, A., Roubik, D. W., Moreno, E., Souza, B. A., Sancho, M. T., ... & González, C. (2009). Expanded parameters to assess the quality of honey from Venezuelan bees (Apis mellifera). Journal of Apiproduct and Apimedical science, 1(3), 72-81.
Yardibi. M. F., Gumus. T. (2010). Some physico-chemical characteristics of honeys produced from sunflower plant (Helianthus annuus L.). International Journal of Food Science and Technology, 45, 707–712.