Reduction of acrylamide by orange waste extract phenolic compounds in potato chips

Document Type : Original research


1 Department of Food Scienece and Technology, Islamic Azad University, Tehran central Branch, Tehran, Iran

2 Department of Chemical Engineering, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran


Acrylamide can lead to carcinogenic, genotoxic, and neurotoxic risks. Adding plant extracts containing phenolic compounds significantly affected acrylamide formation. In this research the effect of orange waste extracts on the reduction of acrylamide, color attribute and sensory properties in fried potato chips were investigated. The average amount of total phenolics in the methanolic extract of orange waste was 39.43 mg GAE/g of dry material. Reduction of acrylamide content in fried potato chips with different doses of phenolic extracts was significantly (p < 0.05). The results showed that the addition of orange waste extract significantly reduced the acrylamide content to 44.8%. Furthermore, significantly difference between control and treatments in color was observed (p > 0.05). Sensory evaluation results showed that doses of phenolic extracts in 0.05 g had the highest acceptance. The effect of orange extract on the reduction of acrylamide formation was positive. Thus, we can conclude that pre-treating potatoes with fruit processing waste extract before frying produces beneficial effects such as a reduction in acrylamide content.


Main Subjects

Açar, Ö.Ç., & Gökmen, V. (2009). Investigation of acrylamide formation on bakery products using a crust-like model. Molecular Nutrition & Food Research, 53(12), 1521–1525.
Adubofuor, J., Amankwah, E., Arthur, B., & Appiah, F. (2010). Comparative study related to physico-chemical properties and sensory qualities of tomato juice and cocktail juice produced from oranges, tomatoes and carrots. African Journal of Food Science, 4(7), 427-433.
Asnaashari, M., Kenari, R. E., Farahmandfar, R., Taghdisi, S. M., & Abnous, K. (2018). Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles. Sensors and Actuators B: Chemical, 265, 339-345.‏
AsnaasharI, M., Kenari, R. E., Farahmandfar, R., Abnous, K., & Taghdisi, S. M. (2019). An electrochemical biosensor based on hemoglobin-oligonucleotides-modified electrode for detection of acrylamide in potato fries. Food chemistry, 271, 54-61.‏
Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., & Chemat, F. (2015). Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry24, 72-79.
Bouskela, E., Cyrino, F. Z., & Lerond, L. (1997). Effect of oral administration of different doses of purified micronized flavonoid fraction on microvascular reactivity after ischemia/reperfusion in the hamster cheek pouch. British Journal of Pharmacology, 122, 1611–1616.
Brenes, M., García, A., Dobarganes, M. C., Velasco, J., & Romero, C. (2002). Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil. Journal of Agricultural and Food Chemistry, 50(21), 5962-5967.
Calabrò, P. S., Pontoni, L., Porqueddu, I., Greco, R., Pirozzi, F., & Malpei, F. (2016). Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results. Waste management, 48, 440-7.
Cheng, K. W., Shi, J. J., Ou, S. Y., Wang, M. F., & Jiang, Y. (2010). Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. Journal of Agricultural and Food Chemistry, 58(1), 309–312.
Cheng, K. W., Zeng, X., Tang, Y. S., Wu, J. J., Liu, Z., Sze, K. H., ... & Wang, M. (2009). Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions. Chemical research in toxicology22(8), 1483-1489.
Espinosa-Pardo, F. A., Nakajima, V. M., Macedo, G. A., Macedo, J. A., & Martínez, J. (2017). Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing, 101, 1-10.
Fathiazad, F., Ahmadi-Ashtiani, H. R., Rezazadeh, S., Jamshidi, M., Mazandarani, M. A. S. O. U. M. E. H., & Khaki, A. R. A. S. H. (2010). Study on phenolics and antioxidant activity of some selected plant of Mazandaran Province. Journal of Medicinal Plants9(34), 1-7.
Hedegaard, R. V., Granby, K., Frandsen, H., Thygesen, J., & Skibsted, L. H. (2008). Acrylamide in bread: Effect of prooxidants and antioxidants. European Food Research and Technology, 227, 519–525.
Hoseinabadi, V., Badii, F., Gharachorloo, M., & Heshmati, A. (2012). Effects of blanching and hydrocolloid coating of pot atoeswith methyl cellulose and tragacanth on French-fries oil uptake and qualitative properties. Iranian Journal of Nutrition Sciences & Food Technology, 6(4), 71-81.
IARC. (1994). Monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer: International Agency for Research on Cancer.
Jackson, L. S., & Al-Taher, F. (2005). Effects of consumer food preparation on acrylamide formation.  Chemistry and safety of acrylamide in food: Springer. p. 447-65.
Jayaprakasha, G., Girennavar, B., & Patil, B. S. (2008). Radical scavenging activities of Rio Red grapefruits and sour orange fruit extracts in different in vitro model systems. Bioresource technology, 99(10), 4484-94.
Jin, C., Wu, X., & Zhang, Y. (2013). Relationship between antioxidants and acrylamide formation: A review. Food research international51(2), 611-620.
Kahkeshani, N., Saeidnia, S., & Abdollahi, M. (2015). Role of antioxidants and phytochemicals on acrylamide mitigation from food and reducing its toxicity. Journal of food science and technology52(6), 3169-3186.
Kim, C. T., Hwang, E. S., & Lee, H. J. (2005.) Reducing acrylamide in fried snack products by adding amino acids. Journal of Food Science, 70(5), C354-C8.
Kita, A., Bråthen, E., Knutsen, S. H., & Wicklund, T. (2004). Effective ways of decreasing acrylamide content in potato crisps during processing. Journal of Agricultural and Food Chemistry, 52(23), 7011-7016.
Kris-Etherton, P. M., Hecker, K. D., Bonanome, A., Coval, S. M., Binkoski, A. E., Hilpert, K. F., ... & Etherton, T. D. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American journal of medicine113(9), 71-88.
Lehotay, M., & Katerina, S. J. (2006). Rapid sample preparation method for LC− MS/MS or C− MS analysis of acrylamide in various food matrices. Journal of Agricultural and Food Chemistry, 54(19), 7001-7008.
Liu, Y., Wang, P., Chen, F., Yuan, Y., Zhu, Y., Yan, H., & Hu, X. (2015). Role of plant polyphenols in acrylamide formation and elimination. Food Chemistry186, 46-53.
Marquez, G., & Anon, M. C. (1986). Influence of reducing sugars and amino acids in the color development of fried potatoes. Journal of Food Science51(1), 157-160.
Martín, M., Siles, J., Chica, A., & Martín, A. (2010). Biomethanization of orange peel waste. Bioresource technology, 101(23), 8993-8999.
Mirheidar, H. (1993). Herbal education. Volume II, Publication of Bureau of Islamic Culture.
Napolitano, A., Morales, F., Sacchi, R., & Fogliano, V. (2008). Relationship between virgin olive oil phenolic compounds and acrylamide formation in fried crisps. Journal of agricultural and food chemistry56(6), 2034-2040.
Pedreschi, F., Kaack, K., & Granby, K. (2004). Reduction of acrylamide formation in potato slices during frying. LWT-Food Science and Technology, 37(6), 679-685.
Pedreschi, F., Leon, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of food Engineering79(3), 786-793.
Rydberg, P., Eriksson, S., Tareke, E., Karlsson, P., Ehrenberg, L., & Törnqvist, M. (2003). Investigations of factors that influence the acrylamide content of heated foodstuffs. Journal of Agricultural and Food Chemistry51(24), 7012-7018.
Sacchi, R., Paduano, A., Fiore, F., Della Medaglia, D., Ambrosino, M. L., & Medina, I. (2002). Partition behavior of virgin olive oil phenolic compounds in oil− brine mixtures during thermal processing for fish canning. Journal of agricultural and food chemistry, 50(10), 2830-2835.
Sawalha, S. M., Arráez-Román, D., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2009). Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chemistry, 116(2), 567-574.
Stadler, R. H., Robert, F., Riediker, S., Varga, N., Davidek, T., Devaud, S., & Blank, I. (2004). In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. Journal of Agricultural and Food Chemistry, 52(17), 5550-5558.
Shavandi, M., Taghdir, M., Abbaszadeh, S., Sepandi, M., & Parastouei, K. (2020b). Modeling the inactivation of Bacillus cereus by infrared radiation in paprika powder (Capsicum annuum). Journal of Food Safety, 40(4), e12797.
Shavandi, M., Kashaninejad, M., Sadeghi, A., Jafari, S. M., & Hasani, M. (2020a). Decontamination of Bacillus cereus in cardamom (Elettaria cardamomum) seeds by infrared radiation and modeling of microbial inactivation through experimental models. Journal of Food Safety, 40(1), e12730.
Sir Elkhatim, K. A., Elagib, R. A., & Hassan, A. B. (2018). Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food science & nutrition6(5), 1214-1219.
Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American journal of enology and viticulture28(1), 49-55.
Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., ... & Riediker, S. (2002). Food chemistry: acrylamide from Maillard reaction products. Nature419(6906), 449.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of agricultural and food chemistry, 50(17), 4998-5006.
Torabi, R., Hojjati, M., Barzegar, M., & Jooyandeh, H. (2017). Effect of hydrocolloid coatings in preventing acrylamide formation and reducing oil uptake in potato chips. Iranian Journal of Nutrition Sciences & Food Technology12(1), 109-120.
Xu, C., Yagiz, Y., Marshall, S., Li, Z., Simonne, A., Lu, J., & Marshall, M. R. (2015). Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food chemistry182, 200-208.
Xu, C., Zhang, Y., Zhu, L., Huang, Y., & Lu, J. (2011). Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines grown in subtropical climate. Journal of agricultural and food chemistry, 59(4), 1078-1086.
Zhang, Y., Dong, Y., Ren, Y., & Zhang, Y. (2006). Rapid determination of acrylamide contaminant in conventional fried foods by gas chromatography with electron capture detector. Journal of Chromatography A, 1116(1-2), 209-216.
Zhang, Y., Chen, J., Zhang, X., Wu, X., & Zhang, Y. (2007). Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries. Journal of Agricultural and Food Chemistry, 55, 523–528.
Zhang, Y., & Zhang, Y. (2008). Effect of natural antioxidants on kinetic behavior of acrylamide formation and elimination in low-moisture asparagine–glucose model system. Journal of Food Engineering, 85(1), 105-115.
Zhu, F., Cai, Y. Z., Ke, J., & Corke, H. (2009). Evaluation of the effect of plant extracts and phenolic compounds on reduction of acrylamide in an asparagine/glucose model system by RP‐HPLC‐DAD. Journal of the Science of Food and Agriculture, 89(10), 1674-1678.
Zhu, F., Cai, Y. Z., Ke, J., & Corke, H. (2009). Evaluation of the effect of plant extracts and phenolic compounds on reduction of acrylamide in an asparagine/glucose model system by RP-HPLC-DAD. Journal of the Science of Food and Agriculture, 89, 1674–1681.
Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., et al. (2003). Acrylamide formation mechanism in heated foods. Journal of agricultural and food chemistry, 51(16), 4782-4787.