Preparation and properties of ginger essential oil nanocapsules

Document Type : Original research

Authors

1 Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Iran

2 Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj, Iran

Abstract

Ginger herb has remarkable antimicrobial and antioxidant activities. In the present study, the aim is to investigate the effect of chitosan as an encapsulation on the physicochemical characteristics of ginger essential oil. Encapsulation process with the ratios of chitosan to ginger essential oil (1:0, 1:0.4, 1:0.8 and 1:1.2 (w/w)) and sodium tripolyphosphate concentrations (0.5 and 1%  w/v) was performed by emulsion-gel method. Encapsulation efficiency, loading capacity, particle size distribution and zeta potential tests were carried out on samples. Also, Fourier-transform infrared spectroscopy, total phenolic compounds, free radical scavenging and minimum inhibitory concentration (MIC) tests were done on selected and control samples. According to the results of physical tests, the optimal sample was selected with the ratio of chitosan to essential oil (1:0.8 w/w) and salt concentration (0.5% w/v). This nanocapsule exhibited high encapsulation efficiency (23.1 %), suitable particle size (734 nm) and zeta potential (29.2 mV). Application of chitosan nanocapsule containing ginger essential oil indicated more MIC on Escherichia coli (0.97 μg/ml), Staphylococcus aureus (1.9 μg/ml), Salmonella typhimurium (3.90 μg/ml) and Pseudomonas aeruginosa (0.97 μg/ml) compared to other control samples. Also, the antioxidant activities (97%) and the amount of total phenolic compound (980 mg/g) of optimal chitosan nanocapsule were significantly improved. The application of chitosan nanocapsules has led to the improvement of the functional properties of the encapsulated ginger essential oil and is suggested as a natural alternative to chemical additives.

Keywords

Main Subjects

Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmanda, H., Koshio, S., Dorkoosh, F. A., Maher, Z., & Elsabee, B. (2011). Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydrate Polymers, 86, 142– 146.
Choia, J. G., Kim, S. Y., Jeong, M., & Oh, M. S. (2017). Pharmacotherapeutic potential of ginger and its compounds in age-relatedneurological disorders. Pharmacology and Therapeutics, 33(2), 1-14.
Costa, E. M., Silva, S., Pina, C., Tavaria, F. K., & Pintado, M. M. (2012). Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Clinical microbiology Anaerobe, 18, 305-309.
Dehghani, S., Nouri, M., & Baghi, M. (2019). The effect of adding walnut green husk essential oil on antioxidant and antimicrobial properties of ketchup. Journal of Food and Bioprocess Engineering, 2(2), 93-100.
Fadda, A., Serra, M., Molinu, M. G., Azara, E., Barberis, A., & Sanna, D. (2014). Reaction time and DPPH concentration influence antioxidant activity and kinetic parameters of bioactive molecules and plant extracts in the reaction with the DPPH radical. Journal of Food Composition and Analysis, 35, 112-119.
Gaonkar, A. G., Vasisht, N., Khare, A. R., & Sobel, R. (2014). Microencapsulation in the food industry: A practical implementation guide. Academic Press is an imprint of Elsevier, 187-198.
Gonçalves da Rosa, C., PaulaZapelini de Melo A., Sganzerla, W. G., Machado, M. H., Nunes, M. R., Maciel, M. V. B.,  Bertoldi, F. C., & Barreto, P. L. (2020). Application in situ of zein nanocapsules loaded with Origanum vulgare Linneus and Thymus vulgaris as a preservative in bread. Food Hydrocolloids, 99, 105339.
Gopalakrishnan, L., Raman, L. N., Sethuraman, S., & Krishnan, U. M. (2014). Ellagic acid encapsulated chitosan nanoparticles as anti-hemorrhagic agent. Carbohydrate Polymers, 111, 215–221.
Hasheminejad, N., Khodaiyan, F., & Safari, M. (2019). Improving the antifungal activity of clove essential oil encapsulated bychitosan nanoparticles. Food Chemistry, 275, 113–122.
Hematian, A., Nouri. M., & Safari, S. (2020). Effects of Capparis spinosa extract on kashkquality during storage. Foods and Raw Materials, 8(2), 402-410.
Karimi, H., Tajeddin, B., Salajegheh, F., & Panahi, B. (2020). Effect of edible coatings based on zein and chitosan and the use of Roman aniseed oil on the microbial activity of Mazafati dates. Journal of Food and Bioprocess Engineering, 3(2), 178-184.
Khezerlou, A., Azizi-Lalabadi, M., Mousavi, M. M., & Ehsani, A. (2019). Incorporation of essential oils with antibiotic properties in edible packaging films. Journal of Food and Bioprocess Engineering, 2(1), 77-84.
Mahdizadeh Barzoki, Z., Emam-Djomeh, Z., Rafiee-Tehrani, M., Mortazavian, E., & Moosavi Movahedi, A. A. (2019). Optimization and development of insulin nanoparticles by new thiolated chitosan derivative with ionic gelation method using a model-based methodology. Journal of Food and Bioprocess Engineering, 2(1), 25-34.
Malu, S. P., Obochi, G. O., Tawo, E. N., & Nyon, B. G. (2009). Antibacterial activity and medicinal properties of ginger (Zingiber officinale). Global Journal of Pure and Applied Sciences, 15(3), 365-368.
Muhialdin,  B. J., Kadum, H., Fathallah, S., & Meor Hussin, A. S. (2020). Metabolomics profiling and antibacterial activity of fermented ginger paste extends the shelf life of chicken meat. LWT. 132, 109897.
Nouri, M. (2020). Preparation of nanoliposomes containing Hyssopus officinalis L. and Eryngium caeruleum M.Bieb essential oils and investigate their antimicrobial and antimicrobial effects. Journal of Medicinal Plants, 19(75), 118-131.
Nouri, M., & Khodaiyan, F. (2020a). Green synthesis of chitosan magnetic nanoparticles and their application with polyaldehyde kefiran cross-linker to immobilize pectinase enzyme. Biocatalysis and Agricultural Biotechnology, 29, 1-20.
Nouri, M., & Khodaiyan, F. (2020b). Magnetic biocatalysts of pectinase: Synthesis by macromolecular cross-Linker for application in apple Juice clarification. Food Technology and Biotechnology, 58(4), 391-401.
Nouri, M., Khodaiyan, F., Razavi, H., & Mousavi, M. (2016). Improvement of chitosan production from Persian Gulf shrimp waste by response surface methodology. Food Hydrocolloids, 59(2), 50-58.
Policegoudra, R. S., Abiraj, K., Channe Gowda, D., & Aradhy, S. M. (2007). Isolation and characterization of antioxidant and antibacterial compound from mango ginger (Curcuma amada Roxb.) rhizome. Journal of Chromatography B, 852, 40–48.
Rondanelli, M., Fossari, F., Vecchio, V., Gasparri, C., Peroni, G., Spadaccini, D., Riva A., Petrangolini, G., Iannello, G., Nichetti, M., Infantino, V., & Perna, S. (2020). Clinical trials on pain lowering effect of ginger: A narrative review. Phytotherapy Research, 34(11), 2843-2856.
Sanna, V., Roggio, A. M., Pala, N., Salvatore, M., Giuseppe, L., Mariani, A., & Sechi, M. (2016). Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratro. International Journal of Biological Macromolecules, 72, 531–536.
Seibert, J. B., Autista-Silva, J. P., A1amparo, T. R., Petit, A., Pervier, P., Almeida, J., Santos, C., Azevedo, M., Casilveira Benila, M. G., Brandão, C., Souza, G. H. B.,  Teixeira, L. F. M., & Santos, O. D. H. (2019). Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chemistry, 287, 61-67. 
Srinivasan, K. (2017). Ginger rhizomes (Zingiber officinale): A spice with multiple health beneficial potentials. Pharma Nutrition, 5(1), 18-28.
Stoilova, I., Krastanov, A., Stoyanova, A., Denev, P., & Gargova, S. (2007). Antioxidant activity of a ginger essential oil. Food Chemistry, 102, 764-70.
Su, L., Yin, J. J., Charles, D. K., Moore, J., & Yu, L. (2007). Total phenolic contents chelating capacities, and radical- scavenging properties of black pepper corn, nutmeg, rosehip, cinnamon and oregano leaf. Food Chemistry, 100, 990-997.
Vandana, M., & Sahoo, S. K. (2009). Optimization of physicochemical parameters influencing the fabrication of protein-loaded chitosan nanoparticles. Nanomedicine, 4(7), 773–785.
Wen, A., Delaquis, P., Stanich, K., & Toivonen, P. J. F. M. (2003). Antilisterial activity of selected phenolic acids. Food Microbiology, 20(3), 305-311.
Wisuitiprot, W., Somsiri, A., Ingkaninan, K., & Waranuch, N. (2015). A novel technique for chitosan microparticle preparation using a water/silicone emulsion: Green tea model. International Journal of Cosmetic Science, 33, 351–358.
Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96(2), 578–585.
Xu, Y., & Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics, 250(1), 215–226.
Yeh, H., Chuang, C. H., Chen, H. C., Wan, C., Chen, T., & Lin, L. (2014). Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger essential oils. LWT - Food Science and Technology, 55, 329-334.
Yoksan, R., Jirawutthiwongchai, J., & Arpo, K. (2010). Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids and Surfaces B: Biointerfaces, 76, 292–297.
Zhao, X., Zhu, H., Chen, J., & AO, Q. (2015). FTIR, XRD and SEM analysis of ginger powders with different size. Journal of Food Processing and Preservation, 30, 1-10.