Fabrication and physicochemical characterization of electrospun nanofibers using Chia seed mucilage

Document Type : Original research


1 Department of Food Science & Technology, Agricultural Sciences & Natural Resources University of Khuzestan, Mollasani, Iran

2 Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran


In this study, Chia seed mucilage (CSM) as a new source and polyvinly alcohol (PVA) as co-polymer was used to prepare of nanofibers. Different solutions with CSM/PVA volume ratios of 100:0, 80:20, 60:40, 40:60, 20:80, 0:100 were prepared. Results show the increase in the CSM in the polymer solution increased the viscosity, electrical conductivity and viscosity of solution. Scanning electron microscopy (SEM) was to evaluate the morphology of nanofibers. Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) studies were used to evaluate chemical structure, crystalline structure and thermal characteristics of nanofibers of CSM/PVA. The crystallization index of CSM, PVA, and CSM/PVA nanofibers was 52%, 38%, and 44%, respectively. The non-formation of a new peak and presence of CSM and PVA peaks in the FTIR spectrum of the produced nanofibers are indicative of the lack of chemical reactions between CSM and PVA. Also, the addition of PVA to CSM improves the thermal resistance of the nanofibers.


Main Subjects

Adeli, H., Khorasani, M. T., & Parvazinia, M. (2019). Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. International Journal of Biological Macromolecules, 122, 238-254.
Alhosseini, S. N., Moztarzadeh, F., Mozafari, M., Asgari, S., Dodel, M., Samadikuchaksaraei, A., Kargozar, S., & Jalali, N. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International Journal of Nanomedicine, 7, 25.
Allafchian, A., Jalali, S. A. H., Mousavi, S. E., & Hosseini, S. S. (2020). Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. International Journal of Biological Macromolecules, 155, 1270-1276.
Camelo Caballero, L. R., Wilches-Torres, A., Cárdenas-Chaparro, A., Gómez Castaño, J. A., & Otálora, M. C. (2019). Preparation and physicochemical characterization of softgels cross-linked with cactus mucilage extracted from cladodes of Opuntia Ficus-Indica. Molecules, 24, 2531.
Darwish, A. M., Khalifa, R. E., & El Sohaimy, S. A. (2018). Functional properties of chia seed mucilage supplemented in low fat yoghurt. Alexandria Science Exchange Journal, 39, 450-459.
de Campo, C., Dos Santos, P. P., Costa, T. M. H., Paese, K., Guterres, S. S., de Oliveira Rios, A., & Flôres, S. H. (2017). Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation. Food Chemistry, 234, 1-9.
Ellerbrock, R. H., Ahmed, M. A., & Gerke, H. H. (2019). Spectroscopic characterization of mucilage (chia seed) and polygalacturonic acid. Journal of Plant Nutrition & Soil Science, 182, 888-895.
Fahami, A., & Fathi, M. (2018a). Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocolloids, 81, 31-38.
Fahami, A., & Fathi, M. (2018b). Fabrication and characterization of novel nanofibers from cress seed mucilage for food applications. Journal of Applied Polymer Science, 135, 45811.
Fernandes, S. S., & de las Mercedes Salas-Mellado, M. (2017). Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chemistry, 227, 237-244.
Goh, K. K. T., Matia-Merino, L., Chiang, J. H., Quek, R., Soh, S. J. B., & Lentle, R. G. (2016). The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydrate Polymers, 149, 297-307.
Golkar, P., Kalani, S., Allafchian, A. R., Mohammadi, H., & Jalali, S. A. H. (2019). Fabrication and characterization of electrospun plantago major seed mucilage/PVA nanofibers. Journal of Applied Polymer Science, 136, 47852.
Gu, S., Ren, J., & Vancso, G. (2005). Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal, 41, 2559-2568.
Hadad, S., & Goli, S. A. H. (2018). Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. International Journal of Biological Macromolecules, 114, 408-414.
Haghi, A., & Akbari, M. (2007). Trends in electrospinning of natural nanofibers. Physica Status Solidi (a), 204, 1830-1834.
Hamrang, A., & Howell, B. A. (Eds.). (2013). Foundations of high performance polymers: properties, performance and applications. CRC Press.
He, X., Deng, H., & Hwang, H. M. (2019). The current application of nanotechnology in food and agriculture. Journal of Food & Drug Analysis, 27, 1-21.
Kayaci, F., Ertas, Y., & Uyar, T. (2013). Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. Journal of Agricultural & Food Chemistry, 61, 8156-8165.
Kéri, O., Bárdos, P., Boyadjiev, S., Igricz, T., Nagy, Z. K., & Szilágyi, I. M. (2019). Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers. Journal of Thermal Analysis & Calorimetry, 137, 1249-1254.
Kumar, T. S. M., Kumar, K. S., Rajini, N., Siengchin, S., Ayrilmis, N., & Rajulu, A. V. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 175, 107074.
Kurd, F., Fathi, M., & Shekarchizadeh, H. (2017). Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. International Journal of Biological Macromolecules, 95, 689-695.
Leidy, R., & Ximena, Q. C. M. (2019). Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends in Food Science & Technology, 85, 92-106.
Liu, Y., Dong, L., Fan, J., Wang, R., & Yu, J. Y. (2011). Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning. Journal of Applied Polymer Science, 120, 592-598.
Londhe, P. V., Chavan, S. S., Pawar, A. M., & Shendokar, S. (2019). Optimization of parameters for diameter of nanofibers and FTIR, XRD characterization for synthesized biofunctionalized nanofibers (curcumin, gelatin and formic acid) using electrospinning process. International Journal on Recent Technologies in Mechanical and Electrical Engineering, 6, 10-23.
Menczel, J. D., & Prime, R. B. (Eds.). (2009). Thermal analysis of polymers: fundamentals and applications. John Wiley & Sons.
Motamedi, A. S., Mirzadeh, H., Hajiesmaeilbaigi, F., Bagheri-Khoulenjani, S., & Shokrgozar, M. (2017). Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Progress in Biomaterials, 6, 113-123.
Noshad, M., Ghasemi, P., & Dehghani, S. (2019). Effect of Chia seed gum on physicochemical properties of powder production using foam-mat drying method. Food Science & Technology, 16, 343-351.
Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19-26.
Sen, S., Bal, T., & Rajora, A. D. (2022). Green nanofiber mat from HLM–PVA–Pectin (Hibiscus leaves mucilage–polyvinyl alcohol–pectin) polymeric blend using electrospinning technique as a novel material in wound-healing process. Applied Nanoscience, 12(2), 237-250.
┼×ener, A. G., Altay, A. S., & Altay, F. (2011). Effect of voltage on morphology of electrospun nanofibers. In: 2011 7th International Conference on Electrical and Electronics Engineering (ELECO). Pp. I-324-I-328. IEEE.
Sousa, A. M., Souza, H. K., Uknalis, J., Liu, S.-C., Goncalves, M. P., & Liu, L. (2015). Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydrate Polymers, 115, 348-355.
Urena-Saborio, H., Alfaro-Viquez, E., Esquivel-Alvarado, D., Madrigal-Carballo, S., & Gunasekaran, S. (2018). Electrospun plant mucilage nanofibers as biocompatible scaffolds for cell proliferation. International Journal of Biological Macromolecules, 115, 1218-1224.
Yang, J. M., Yang, J. H., Tsou, S. C., Ding, C. H., Hsu, C. C., Yang, K. C., Yang, C. C., Chen, K. S., Chen, S. W., & Wang, J. S. (2016). Cell proliferation on PVA/sodium alginate and PVA/poly (γ-glutamic acid) electrospun fiber. Materials Science & Engineering: C, 66, 170-177.
Zhang, C., Li, Y., Wang, P., & Zhang, H. (2020). Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Comprehensive Reviews in Food Science and Food Safety, 19(2), 479-502.