Synbiotic microencapsulation of corncob xylooligosaccharide and in vitro study for bioactivity and stability upon digestion and storage

Document Type : Original research


1 Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonavila, Sri Lanka

2 Department of Chemical & Process Engineering, Faculty of Engineering, University of Peradeniya , 20400 Peradeniya, Sri Lanka


Xylooligosaccharides (XOS) are emerging prebiotic that may improve the viability of probiotics and gastrointestinal health. XOS derived from corncob was evaluated for its prebiotic activity with three different probiotic strains. The present study focused on XOS to encapsulate Lactobacillus rhamnosus (LGG) and explore it’s in vitro survival & stability upon storage through structural interactive optimization of encapsulation materials. L. rhamnosus (LGG) showed the highest viability 9.86 ± 0.04 log CFU/mL upon XOS. Among three different carrier types namely, Sodium alginate (SA), Chitosan & Sodium tripolyphosphate (STPP), Whey protein liquid -maltodextrin complex, the SA showed the highest encapsulation efficiency 87.6 ± 0.1%, yield and cost effectiveness. XOS and SA were used for encapsulation of LGG with different formulations. The stability of free and encapsulated LGG was assessed using gastrointestinal conditions. All the treatments provided better encapsulation efficiency > 80 %. M2 formulation showed the highest encapsulation efficiency 92 ± 1%, maximum viability in simulated gastric juice 8.7 ± 0.1 log CFU/mL and bile solution 8.6 ± 0.2 log CFU/mL, resulting significantly (p < 0.05) improved survival when compared with free bacteria. The microcapsules were then incorporated into yoghurt and the results showed that there was an increased survival of probiotics because of the protection of cells by microencapsulation and the promoting effect of XOS on the probiotics growth. The XOS extracted from corncob was successfully incorporated as a prebiotic encapsulation material for effective delivery of L. rhamnosus LGG. The different combinations of wall materials with XOS provided an opportunity to produce beads with better structure and protection.


Main Subjects

Albertini, B., Vitali, B., Passerini, N., Cruciani, F., Di Sabatino, M., Rodriguez, L., & Brigidi, P. (2010). Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. European Journal of Pharmaceutical Sciences, 40(4), 359–366.
Gusakov, A. V., Kondratyeva, E. G., & Sinitsyn, A. P. (2011). Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. International Journal of Analytical Chemistry, 2011.
Assaf, J. C., Khoury, A. El, Chokr, A., Louka, N., & Atoui, A. (2019). A novel method for elimination of aflatoxin M1 in milk using Lactobacillus rhamnosus GG biofilm. International Journal of Dairy Technology, 72(2), 248–256.
Atia, A., Gomaa, A., Fliss, I., Beyssac, E., Garrait, G., & Subirade, M. (2016). A prebiotic matrix for encapsulation of probiotics: Physicochemical and microbiological study. Journal of Microencapsulation, 33(1), 89–101.
Azam, M., Saeed, M., Pasha, I., & Shahid, M. (2020). A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. Food Bioscience, 37, 100679.
Azmi, A. F. M. N., Mustafa, S., Hashim, D. M., & Manap, Y. A. (2012). Prebiotic activity of polysaccharides extracted from Gigantochloalevis (Buluhbeting) shoots. Molecules, 17(2), 1635–1651.
Bannikova, A., Zyainitdinov, D., Evteev, A., Drevko, Y., & Evdokimov, I. (2020). Microencapsulation of polyphenols and xylooligosaccharides from oat bran in whey protein-maltodextrin complex coacervates: In-vitro evaluation and controlled release. Bioactive Carbohydrates & Dietary Fibre, 23, 100236.
Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional   foods. Trends in Food Science & Technology, 31(2), 118–129.
Champagne, C. P., Gomes da Cruz, A., & Daga, M. (2018). Strategies to improve the functionality of probiotics in supplements and foods. Current Opinion in Food Science, 22, 160–166.
Daliri, E. B.-M., & Lee, B. H. (2015). New perspectives on probiotics in health and disease. Food Science & Human Wellness, 4(2), 56–65.
Darjani, P., Hosseini Nezhad, M., Kadkhodaee, R., & Milani, E. (2016). Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions. LWT - Food Science & Technology, 73, 162–167.
De Castro-Cislaghi, F. P., Carina Dos Reis, E. S., Fritzen-Freire, C. B., Lorenz, J. G., & Sant’Anna, E. S. (2012). Bifidobacterium Bb-12 microencapsulated by spray drying with whey: Survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. Journal of Food Engineering, 113(2), 186-193.
Gandomi, H., Abbaszadeh, S., Misaghi, A., Bokaie, S., & Noori, N. (2016). Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT - Food Science & Technology, 69, 365–371.
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D., Verbeke, K., & Gregor R. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502.
Brinques, G. B., & Ayub, M. A. Z. (2011). Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. Journal of food engineering, 103(2), 123-128.
Haghshenas, B., Nami, Y., Haghshenas, M., Barzegari, A., Sharifi, S., Radiah, D., Rosli, R., & Abdullah, N. (2015). Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian Journal of Pharmaceutical Sciences, 10(4), 350–361.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.
Huang, J., Wang, Q., Li, T., Xia, N., & Xia, Q. (2017). Nanostructured lipid carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: Preparation and in vitro characterization studies. Journal of Food Engineering, 215, 1–12.
Ismail, S. A., El-Sayed, H. S., & Fayed, B. (2020). Production of prebiotic chitooligosaccharide and its nano/microencapsulation for the production of functional yoghurt. Carbohydrate polymers, 234, 115941.
Martin, M. J., Lara-Villoslada, F., Ruiz, M. A., & Morales, M. E. (2013). Effect of unmodified starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716. LWT - Food Science & Technology, 53(2), 480–486.
Mituniewicz–Małek, A., Zielinska, D., & Ziarno, M. (2019). Probiotic monocultures in fermented goat milk beverages – Sensory quality of final product. International Journal of Dairy Technology, 72(2), 240–247.
Moreno, F. J., Corzo, N., Montilla, A., Villamiel, M., & Olano, A. (2017). Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Current Opinion in Food Science, 13, 50–55.
Pasqualin Cavalheiro, C., Ruiz-Capillas, C., Herrero, A. M., Jimenez-Colmenero, F., Ragagnin de Menezes, C., & Martins Fries, L. L. (2015). Application of probiotic delivery systems in meat products. Trends in Food Science & Technology, 46(1), 120–131.
Peredo, A. G., Beristain, C. I., Pascual, L. A., Azuara, E., & Jimenez, M. (2016). The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT - Food Science & Technology, 73, 191–196.
Pereira, G. A., Arruda, H. S., Molina, G., & Pastore, G. M. (2018). Extraction optimization and profile analysis of oligosaccharides in banana pulp and peel. Journal of Food Processing & Preservation, 42(1), 1–10.
Pinto, S. S., Fritzen-Freire, C. B., Benedetti, S., Murakami, F. S., Petrus, J. C. C., Prudêncio, E. S., & Amboni, R. D. (2015). Potential use of whey concentrate and prebiotics as carrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Research International, 67, 400-408.
Rajam, R., & Anandharamakrishnan, C. (2015). Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharides as wall material by spray drying. LWT - Food Science & Technology, 60(2), 773–780.
Ranadheera, C. S., Naumovski, N., & Ajlouni, S. (2018). Non-bovine milk products as emerging probiotic carriers: Recent developments and innovations. Current Opinion in Food Science, 22, 109–114.
Rascon, M. P., Huerta-Vera, K., Pascual-Pineda, L. A., Contreras-Oliva, A., Flores-Andrade, E., Castillo-Morales., & Gonzalez-Morales, I. (2018). Osmotic dehydration assisted impregnation of Lactobacillus rhamnosus in banana and effect of water activity on the storage stability of probiotic in the freeze-dried product. LWT - Food Science & Technology, 92, 490–496.
Rodrigues, F. J., Omura, M. H., Cedran, M. F., Dekker, R. F. H., Barbosa-Dekker, A. M., & Garcia, S. (2017). Effect of natural polymers on the survival of Lactobacillus casei encapsulated in alginate microspheres. Journal of Microencapsulation, 34(5), 431–439.
Sathyabama, S., Ranjith kumar, M., Bruntha devi, P., Vijayabharathi, R., & Brindhapriyadharisini, V. (2014). Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT - Food Science & Technology, 57(1), 419–425.
Silva, K. C. G., Cezarino, E. C., Michelon, M., & Sato, A. C. K. (2018). Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT - Food Science & Technology, 89, 503–509.
Soltani, M., Hekmat, S., & Ahmadi, L. (2018). Microbial and sensory evaluation of probiotic yoghurt supplemented with cereal/pseudo-cereal grains and legumes. International Journal of Dairy Technology, 71, 141–148.
Stojanovic, R., Belscak-Cvitanovic, A., Manojlovic, V., Komes, D., Nedovic, V., & Bugarski, B. (2012). Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. Journal of the Science of Food & Agriculture, 92(3), 685–696.
Wang, J., Korber, D. R., Low, N. H., & Nickerson, M. T. (2014). Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein-based microcapsules. Food Research International, 55, 20–27.
Wu, Y., & Zhang, G. (2018). Synbiotic encapsulation of probiotic Latobacillus plantarum by alginate-arabinoxylan composite microspheres. LWT, 93, 135-141.
Xavier dos Santos, D., Casazza, A. A., Aliakbarian, B., Bedani, R., Saad, S. M. I., & Perego, P. (2019). Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT - Food Science & Technology, 99, 404–410.
Yasmin, I., Saeed, M., Pasha, I., & Zia, M. A. (2019). Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum bl-05 in simulated gastrointestinal conditions. Probiotics & Antimicrobial Proteins, 11(2), 413–426.
Yee, W. L., Chan, L. Y., Nyam K. L., & Pui, L. P. (2019). Microencapsulation of Lactobacillus acidophilus NCFM incorporated with mannitol and its storage stability in mulberry tea. Ciencia e Agrotecnologia, 43, e005819.
Zanjani, M. A. K., Tarzi, B. G., Sharifan, A., & Mohammadi, N. (2014). Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iranian Journal of Pharmaceutical Research, 13(3), 843–852.