Evaluation of antioxidant, anti-inflammatory and anti-diabetic properties of noni fruit (Morinda citrifolia L.) and its simulated gastrointestinal digesta fractions

Document Type : Original research


1 Department of Food Science & Technology, Faculty of Agriculture, University of Peradeniya, Sri Lanka

2 Department of Food Science & Technology, Faculty of Livestock, Fisheries, & Nutrition, Wayamba University of Sri Lanka, Makandura, Sri Lanka


Noni (Morinda citrifolia L.) has been used for years in traditional medicine. As noni fruit is not utilized by the food industry in Sri Lanka, this study focused on determining the bioactives and functional properties of ripe fruit extract (methanolic and water) and simulated gastrointestinal digesta fractions. Methanol (80%) showed higher extractability of bioactives than water. Moreover, antioxidant and anti-inflammatory properties were higher, and anti-diabetic properties were lower in methanolic extracts than those in water extracts. The total phenolics (TPC) of 198.6 ± 2.48 μmol gallic acid equivalent/g FW, and ascorbic acid, anthocyanin, and β-carotene contents of 53.01 ± 1.47, 57.33 ± 1.01, and 0.27 ± 0.04 μg/g FW, respectively were evident in the fresh fruit. DPPH and ABTS radicals scavenging percentages of the fresh fruit were 97.09 and 98.98, respectively. The total antioxidant capacity of the fresh fruit was 33.94 mg AAE/g FW. Singlet oxygen and Nitric oxide scavenging abilities of the fresh fruit were above 90%. Percentages of heat-induced hemolysis, protein denaturation inhibition, and proteinase inhibitory activities of the fresh fruit at 2 µg/mL were 37.14, 42.32, and 5.23, respectively. Furthermore, alpha-amylase and alpha-glucosidase inhibitory activities of the fresh fruit at 2 µg/mL were 13.7 and 17.0%, respectively. Bioactives and antioxidant, anti-diabetic, and anti-inflammatory activities of dialysable fractions were significantly lower (p < 0.05) than their originals. Positive correlations between TPC and antioxidant activities, and anti-inflammatory and antioxidant activities were evident. This study revealed the therapeutic benefits and appealing sensory attributes that should be developed when producing Noni fruit-incorporated products.


Main Subjects

Abou Assi, R., Darwis, Y., Abdulbaqi, I. M., khan, A. A., Vuanghao, L., & Laghari, M. H. (2017). Morinda citrifolia (Noni): A comprehensive review of its industrial uses, pharmacological activities, and clinical trials. Arabian Journal of Chemistry, 10(5), 691–707. https://doi.org/10.1016/j.arabjc.2015.06.018
Bashkin, A., Ghanim, M., Abu-Farich, B., Rayan, M., Miari, R., Srouji, S., Rayan, A., & Falah, M. (2021). Forty-one plant extracts screened for dual antidiabetic and antioxidant functions: Evaluating the types of correlation between α-amylase inhibition and free radical scavenging. Molecules, 26(2), 1–16. https://doi.org/10.3390/molecules26020317
Bouayed, J., Deußer, H., Hoffmann, L., & Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466–1472. https://doi.org/10.1016/j.foodchem.2011.10.030
Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13(2), 155–171. https://doi.org/10.1111/1541-4337.12049
Chan-Blanco, Y., Vaillant, F., Mercedes Perez, A., Reynes, M., Brillouet, J. M., & Brat, P. (2006). The noni fruit (Morinda citrifolia L.): A review of agricultural research, nutritional and therapeutic properties. Journal of Food Composition & Analysis, 19(6–7), 645–654. https://doi.org/10.1016/j.jfca.2005.10.001
Chu, Y. F., Wise, M. L., Gulvady, A. A., Chang, T., Kendra, D. F., Jan-Willem Van Klinken, B., Shi, Y., & O’Shea, M. (2013). In vitro antioxidant capacity and anti-inflammatory activity of seven common oats. Food Chemistry, 139(1–4), 426–431. https://doi.org/10.1016/j.foodchem.2013.01.104
Cilla, A., Alegría, A., De Ancos, B., Sánchez-Moreno, C., Cano, M. P., Plaza, L., Clemente, G., Lagarda, M. J., & Barberá, R. (2012). Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: Influence of food matrix and processing. Journal of Agricultural and Food Chemistry, 60(29), 7282–7290. https://doi.org/10.1021/jf301165r
DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(July), 1–23. https://doi.org/10.1038/nrdp.2015.19
Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18–26. https://doi.org/10.1016/j.abb.2018.06.001
European Commission. (2002). Scientific Committee on Food. Opinion of the Scientific Committee on Food on Tahitian Noni ® juice. SCF/CS/NF/DOS/18 ADD 2 Final, December, 1–68.
Gunathilake, K. D. P. P., & Ranaweera, K. K. D. S. (2016). Antioxidative properties of 34 green leafy vegetables. Journal of Functional Foods, 26, 176–186. https://doi.org/10.1016/j.jff.2016.07.015
Gunathilake, K. D. P. P., Ranaweera, K. K. D. S., & Rupasinghe, H. P. V. (2018a). Change of phenolics, carotenoids, and antioxidant capacity following simulated gastrointestinal digestion and dialysis of selected edible green leaves. Food Chemistry, 245, 371–379. https://doi.org/10.1016/j.foodchem.2017.10.096
Gunathilake, K. D. P. P., Ranaweera, K. K. D. S., & Rupasinghe, H. P. V. (2018b). In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines, 6(4), 1–10. https://doi.org/10.3390/biomedicines6040107
Gunathilake, K. D. P. P., Somathilaka Ranaweera, K. K. D., & Vasantha Rupasinghe, H. P. (2018). Effect of different cooking methods on polyphenols, carotenoids, and antioxidant activities of selected edible leaves. Antioxidants, 7(9), 1–12. https://doi.org/10.3390/antiox7090117
Halim, A. A., Zain, Z. M., Mubarak, A., & Ahmad, F. T. (2019). Effect of different drying methods on antioxidant properties, stevioside, and rebaudioside A contents of stevia (Stevia rebaudiana bertoni) leaves. Asian Journal of Agriculture and Biology, 7(1), 61–68.
Harirforoosh, S., Asghar, W., & Jamali, F. (2013). Adverse effects of nonsteroidal anti-inflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. Journal of Pharmacy and Pharmaceutical Sciences, 16(5), 821–847. https://doi.org/10.18433/j3vw2f
Hettiarachchi, H. A. C. O., Gunathilake, K. D. P. P., & Jayatilake, S. (2021). Effect of gastrointestinal digestion and dialysis process on phenolic compounds and antioxidant capacity of selected underutilized fruits in Sri Lanka. Tropical Agricultural Research, 32(2), 212. https://doi.org/10.4038/tar.v32i2.8468
Inada, A. C., Figueiredo, P. S., dos Santos-Eichler, R. A., Freitas, K. de C., Hiane, P. A., de Castro, A. P., & Guimarães, R. de C. A. (2017). Morinda citrifolia Linn. (noni) and its potential in obesity-related metabolic dysfunction. Nutrients, 9(6), 1–29. https://doi.org/10.3390/nu9060540
Jahurul, M. H. A., Patricia, M., Shihabul, A., Norazlina, M. R., George, M. R. R., Noorakmar, W., Lee, J. S., Jumardi, R., Jinap, S., & Zaidul, I. S. M. (2021). A review on functional and nutritional properties of noni fruit seed (Morinda citrifolia L.) and its oil. Food Bioscience, 41, 101000. https://doi.org/10.1016/j.fbio.2021.101000
Kazemi, S., Shirzad, H., & Rafieian-Kopaei, M. (2018). Recent Findings in Molecular Basis of Inflammation and Anti-inflammatory Plants. Current Pharmaceutical Design, 24(14), 1551–1562. https://doi.org/10.2174/1381612824666180403122003
Kim, M. J., Lee, S. B., Lee, H. S., Lee, S. Y., Baek, J. S., Kim, D., Moon, T. W., Robyt, J. F., & Park, K. H. (1999). Comparative study of the inhibition of α-glucosidase, α-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Archives of Biochemistry and Biophysics, 371(2), 277–283. https://doi.org/10.1006/abbi.1999.1423 
Kim, Y. M., Wang, M. H., & Rhee, H. I. (2004). A novel α-glucosidase inhibitor from pine bark. Carbohydrate Research, 339(3), 715–717. https://doi.org/10.1016/j.carres.2003.11.005 
Kulathunga, S., & Ldam, A. (2017). Morinda citrifolia Linn grown in Sri Lanka: Shelf life of fruit juice. American Journal of Ethnomedicine, 04(02), 1–3. https://doi.org/10.21767/2348-9502.1000018
Kumari, G. U. W. U. P., & Gunathilake, K. D. P. P. (2020). In vitro bioaccessibility and antioxidant activity of black plum (Syzygium caryophyllatum). Journal of Food Biochemistry, 44(12), 1–15. https://doi.org/10.1111/jfbc.13499
Mba, J. R., Zouheira, D., Dairou, H., Yadang, F. S., Gael, N. N., Ayong, L., ... & Agbor, G. A. (2022). In vitro antioxidant, anti-inflammatory, and digestive enzymes inhibition activities of hydro-ethanolic leaf and bark extracts of Psychotria densinervia (K. Krause) Verdc. Advances in Pharmacological and Pharmaceutical Sciences, 2022, 8459943.
Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380.
Nijat, D., Lu, C. fang, Lu, J. juan, Abdulla, R., Hasan, A., Aidarhan, N., & Aisa, H. A. (2021). Spectrum-effect relationship between UPLC fingerprints and antidiabetic and antioxidant activities of Rosa rugosa. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1179(November 2020), 122843. https://doi.org/10.1016/j.jchromb.2021.122843
Niki, E., Yoshida, Y., Saito, Y., & Noguchi, N. (2005). Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochemical and Biophysical Research Communications, 338(1), 668–676. https://doi.org/10.1016/j.bbrc.2005.08.072
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3 
Payne, A. N., Zihler, A., Chassard, C., & Lacroix, C. (2012). Advances and perspectives in vitro human gut fermentation modeling. Trends in Biotechnology, 30(1), 17–25. https://doi.org/10.1016/j.tibtech.2011.06.011
Plaskova, A., & Mlcek, J. (2023). New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Frontiers in Nutrition, 10, 1118761.
Poovitha, S., & Parani, M. (2016). In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complementary and Alternative Medicine, 16(Suppl 1), 1–8. https://doi.org/10.1186/s12906-016-1085-1 
Rahman, M., Islam, B., Biswas, M., & Alam, A. H. M. K. (2015). In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes, 1–9. https://doi.org/10.1186/s13104-015-1618-6 
Sabu, M. C., & Kuttan, R. (2002). Anti-diabetic activity of medicinal plants and their relationship with their antioxidant property. Journal of Ethnopharmacology, 81(2), 155–160. https://doi.org/10.1016/S0378-8741(02)00034-X
Sabu, M. C., & Kuttan, R. (2004). Antidiabetic activity of Aegle marmelos and its relationship with its antioxidant properties. Indian Journal of Physiology and Pharmacology, 48(1), 81–88.
Santos, D. I., Saraiva, J. M. A., Vicente, A. A., & Moldão-Martins, M. (2019). Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814174-8.00002-0
Septembre-Malaterre, A., Remize, F., & Poucheret, P. (2018). Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International, 104, 86–99. https://doi.org/10.1016/j.foodres.2017.09.031
Shai, L. J., Masoko, P., Mokgotho, M. P., Magano, S. R., Mogale, A. M., Boaduo, N., & Eloff, J. N. (2010). Yeast alpha-glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. South African Journal of Botany, 76(3), 465–470. https://doi.org/10.1016/j.sajb.2010.03.002
Sharma, J. N., Al-Omran, A., & Parvathy, S. S. (2007). Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 15(6), 252–259. https://doi.org/10.1007/s10787-007-0013-x
Siddiqui, M. (2021). Phytochemical Analysis of Some Medicinal Plants. Liaquat Medical Research Journal, 3(8), 1–5. https://doi.org/10.38106/lmrj.2021.36
Su, B. N., Pawlus, A. D., Jung, H. A., Keller, W. J., McLaughlin, J. L., & Kinghorn, A. D. (2005). Chemical constituents of the fruits of Morinda citrifolia (Noni) and their antioxidant activity. Journal of Natural Products, 68(4), 592–595. https://doi.org/10.1021/np0495985
Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599–606. https://doi.org/10.1016/j.foodchem.2009.10.030
Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., & Nguyen, H. C. (2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of food quality, 2019.
West, B. J., Jensen, C. J., Westendorf, J., & White, L. D. (2006). A safety review of noni fruit juice. Journal of Food Science, 71(8), 100–106. https://doi.org/10.1111/j.1750-3841.2006.00164.x