Exploring the Nutritional and Therapeutic Potentials of Red Seaweeds: A Review

Document Type : Review article

Authors

1 Department of Biosystems Technology, Faculty of Technology University of Jaffna, Ariviyal Nagar, Kilinochchi. Sri Lanka, Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, 60150, Sri Lanka

2 Department of Aquaculture & Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, 60170, Sri Lanka

3 Department of Biosystems Technology, Faculty of Technology University of Jaffna, Ariviyal Nagar, Kilinochchi. Sri Lanka

4 Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, 60150, Sri Lanka

Abstract

Seaweeds stand out as a cost-effective, ecologically friendly, and productive source of bioactive compounds, Additionally, readily available in natural ecosystems. With growing interest, Seaweeds are finding widespread application in various sectors particularly in food, healthcare and cosmetics owing to their abundance in bioactive substances and minimal competition for freshwater and land resources. Seaweeds hold promise in preventing and treating chronic diseases and in producing functional food, attributed to their rich array of bioactive compounds. Among them, red seaweeds (Rhodophyta), the most prevalent class, boasts a diverse profile of seaweeds, that are potentially rich in bioactive compounds, including polysaccharides, soluble dietary fibers, proteins, peptides, polyunsaturated fatty acids, vitamins, minerals, pigments, phycobiliproteins and secondary metabolites (polyphenols, flavonoids, steroids, glycosides, alkaloids, tannins, saponins and triterpenoids). These compounds exhibit various biological activities, such as antibacterial, anti-inflammatory, anticancer, antidiabetic, anti-obesity, and anti-hypertensive properties. This review delves into the bioactive components, characteristics, and applications of red seaweeds, aiming to raise awareness among the public regarding seaweed consumption as a dietary source.

Keywords

Main Subjects

Abirami, R., G., & Kowsalya, S. (2012). Phytochemical screening, microbial
load and antimicrobial activity of underexploited seaweeds. Int.
Res. J. Microbiol. 3, 328–332. Available online
http://www.interesjournals.org/IRJM.
Abu‐Ghannam, N., & Rajauria, G. (2013). Antimicrobial activity of
compounds isolated from algae. In Functional Ingredients from
Algae for Foods and Nutraceuticals (pp. 287–306).
https://doi.org/10.1533/9780857098689.2.287.
Admassu, H., Gasmalla, M. a. A., Yang, R., & Zhao, W. (2017). Bioactive
Peptides Derived from Seaweed Protein and Their Health
Benefits: Antihypertensive, Antioxidant, and Antidiabetic
Properties. Journal of Food Science, 83(1), 6–16.
https://doi.org/10.1111/1750-3841.14011.
Agrawal, S. P., Siddiqui, S. A., Chaudhary, & Rathore, M. S. (2022). Bioprospection and compositional multivariate analysis revealed the
industrial potential of selected seaweeds along the Gujarat
seacoast. Bioresource Technology Reports, 19, 101130.
https://doi.org/10.1016/j.biteb.2022.101130.
Ahmed, H. H., Hegazi, M., Abd‐Alla, H. I., Eskander, E. F., & Ellithey, M.
S. (2011). Antitumour and Antioxidant Activity of Some Red Sea
Seaweeds in Ehrlich Ascites Carcinoma in vivo. Zeitschrift Für
Naturforschung C, 66(7–8), 367–376.
https://doi.org/10.1515/znc-2011-7-808.
Al-Araby, S. Q., Rahman, M. A., Chowdhury, M. A., Das, R. R., Chowdhury,
T. A., Hasan, C. M., Afroze, M., Hashem, M. A., Hajjar, D.,
Alelwani, W., Makki, A. A., & Haque, M. A. (2020). Padina
tenuis (marine alga) attenuates oxidative stress and
streptozotocin-induced type 2 diabetic indices in Wistar albino
rats. South African Journal of Botany, 128, 87–100.
https://doi.org/10.1016/j.sajb.2019.09.007.
Anandakumar, S., Balamurugan, M., Rajadurai, M., & Vani, B. (2008).
Antihyperglycemic and antioxidant effects of red algae Hypnea
musciformis in alloxan-induced diabetic rats. Biomedicine, 28(1),
34e38.
Antony, T., & Chakraborty, K. (2019). First report of antioxidative 2Hchromenyl derivatives from the intertidal red seaweed Gracilaria
salicornia as potential anti-inflammatory agents. Natural Product
Research, 34(24), 3470–3482.
https://doi.org/10.1080/14786419.2019.1579807.
Appu, A., Sadanandan, R., & Ravichandran, S. (2023). Screening of
Antibacterial, Antifungal and Antioxidant Activity of Methanolic
Extract from Marine Algae, Hypnea indica. Advances in Zoology
and Botany, 11(4), 239–245.
https://doi.org/10.13189/azb.2023.110401.
Araújo, M. L. H., Melo, V. M. M., Silva, L., Amorim, R., Pereira, M., &
Benevídes, N. M. B. (2005). Differential activity of a lectin from
Solieria filiformis against human pathogenic bacteria. Brazilian
Journal of Medical and Biological Research, 38(12), 1769–1773.
https://doi.org/10.1590/s0100-879x2005001200005.
Arulkumar, A., Rosemary, T., Paramasivam, S., & Ramaswamy, B. R.
(2018). Phytochemical composition, in vitro antioxidant,
antibacterial potential and GC-MS analysis of red seaweeds
(Gracilaria corticata and Gracilaria edulis) from Palk Bay, India.
Biocatalysis and Agricultural Biotechnology, 15, 63–71.
https://doi.org/10.1016/j.bcab.2018.05.008.
Aryee, A. N. A., Agyei, D., & Akanbi, T. O. (2018b). Recovery and
utilization of seaweed pigments in food processing. Current
Opinion in Food Science, 19, 113–119.
https://doi.org/10.1016/j.cofs.2018.03.013.
Baghel, R. S., Choudhary, B., Pandey, S., Pathak, P. K., Patel, M. K., &
Mishra, A. (2023). Rehashing our insight of seaweeds as a
potential source of foods, nutraceuticals, and pharmaceuticals.
Foods, 12(19), 3642. https://doi.org/10.3390/foods12193642.
Bahari, A., Moelants, K., Huc-Mathis, D., Wallecan, J., Mangiante, G.,
Mazoyer, J., Hendrickx, M., & Grauwet, T. (2022).
Compositional and rheological analysis of carrageenan from the
gametophyte phase of the red seaweed Chondrus crispus neutrally
extracted at varying temperatures and time. Food Hydrocolloids,
133, 107995. https://doi.org/10.1016/j.foodhyd.2022.107995.
Bansemir, A., Blume, M. C., Schröder, S., & Lindequist, U. (2006).
Screening of cultivated seaweeds for antibacterial activity against
fish pathogenic bacteria. Aquaculture, 252(1), 79–84.
https://doi.org/10.1016/j.aquaculture.2005.11.051.
Banskota, A. H., Stefanova, R., Sperker, S., Lall, S. P., Craigie, J. S., Hafting,
J. T., & Critchley, A. T. (2014). Polar lipids from the marine
macroalga Palmaria palmata inhibit lipopolysaccharide-induced
nitric oxide production in RAW264.7 macrophage cells.
Phytochemistry, 101, 101–108.
https://doi.org/10.1016/j.phytochem.2014.02.004.
Barral-Martinez, M., Flórez-Fernández, N., Domı́Nguez, H., & Torres, M. D.
(2020b). Tailoring hybrid carrageenans from Mastocarpus
stellatus red seaweed using microwave hydrodiffusion and
gravity. Carbohydrate Polymers, 248, 116830.
https://doi.org/10.1016/j.carbpol.2020.116830.
Besednova, N. N., Andryukov, B. G., Zaporozhets, T. S., Kryzhanovsky, S.
P., Kuznetsova, T. A., Fedyanina, L. N., ... & Zvyagintseva, T. N.
(2020). Algae Polyphenolic Compounds and Modern
Antibacterial Strategies: Current achievements and immediate
Surendran et al. JFBE 7(2): 51-68,2024
62
Prospects. Biomedicines, 8(9), 342.
https://doi.org/10.3390/biomedicines8090342.
Bhakuni D, Rawat D. (2006). Bioactivity of marine organisms. In Springer
eBooks: Bioactive Marine Natural Products. Springer, Dordrecht.
103–124. https://doi.org/10.1007/1-4020-3484-9_5.
Bleakley, S., & Hayes, M. (2017). Algal Proteins: Extraction, Application,
and Challenges Concerning Production. Foods, 6(5), 33.
https://doi.org/10.3390/foods6050033.
Bohn, T., Bonet, M. L., Borel, P., Keijer, J., Landrier, J., Milisav, I., Ribot,
J., Riso, P., Winklhofer‐Roob, B. M., Sharoni, Y., Corte-Real, J.,
Van Helden, Y., Loizzo, M. R., Poljšak, B., Porrini, M., Roob, J.
M., Trebše, P., Tundis, R., Wawrzyniak, A., . . . DulińskaLitewka, J. (2021). Mechanistic aspects of carotenoid health
benefits – where are we now? Nutrition Research Reviews, 34(2),
276–302. https://doi.org/10.1017/s0954422421000147.
Boonsri, N., Rudtanatip, T., Withyachumnarnkul, B., & Wongprasert, K.
(2016b). Protein extract from red seaweed Gracilaria fisheri
prevents acute hepatopancreatic necrosis disease (AHPND)
infection in shrimp. Journal of Applied Phycology, 29(3), 1597–
1608. https://doi.org/10.1007/s10811-016-0969-2.
Bouhlal, R., Hassane, R., José, M., & Bourgougnon, N. (2010). The
antibacterial potential of the Seaweeds (Rhodophyceae) of the
Strait of Gibraltar and the Mediterranean Coast of Morocco. HAL
(Le Centre Pour La Communication Scientifique Directe).
https://hal.science/hal-00858021.
Carpena, M., Caleja, C., Pereira, E., Pereira, C., Ćirić, A., Sokóvić, M., SoriaLópez, A., Fraga-Corral, M., Simal-Gándara, J., Ferreira, I. C.,
Barros, L., & Prieto, M. A. (2021). Red seaweeds as a source of
nutrients and bioactive compounds: optimization of the
extraction. Chemosensors, 9(6), 132.
https://doi.org/10.3390/chemosensors9060132.
Carpena, M., García-Pérez, P., Garcia‐Oliveira, P., Chamorro, F., Otero, P.,
Lourenço-Lopes, C., Cao, H., Simal-Gándara, J., & Prieto, M. A.
(2022). Biological properties and potential of compounds
extracted from red seaweeds. Phytochemistry Reviews, 22(6),
1509–1540. https://doi.org/10.1007/s11101-022-09826-z.
Chan, P. T., Matanjun, P., Yasir, S. M., & Tan, T. S. (2013). Antioxidant and
hypolipidaemic properties of red seaweed, Gracilaria changii.
Journal of Applied Phycology, 26(2), 987–997.
https://doi.org/10.1007/s10811-013-0135-z.
Charoensiddhi, S., Conlon, M. A., Franco, C. M., & Zhang, W. (2017). The
development of seaweed-derived bioactive compounds for use as
prebiotics and nutraceuticals using enzyme technologies. Trends
in Food Science &Amp; Technology, 70, 20–33.
https://doi.org/10.1016/j.tifs.2017.10.002.
Charway, G. N. A., Yenumula, P., & Kim, Y. (2018). Marine algae and their
potential application as antimicrobial agents. Journal of Food
Hygiene and Safety, 33(3), 151–156.
https://doi.org/10.13103/jfhs.2018.33.3.151.
Chaves, R. P., Da Silva, S. R., Neto, L. G. N., Carneiro, R. F., Da Silva, A.
L. C., Sampaio, A. H., Sousa, B., Cabral, M. G., Videira, P. A.,
Teixeira, E. H., & Nagano, C. S. (2018). Structural
characterization of two isolectins from the marine red alga
Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer
effect on MCF-7 breast cancer cells. International Journal of
Biological Macromolecules, 107, 1320–1329.
https://doi.org/10.1016/j.ijbiomac.2017.09.116.
Chen, J. C., Wang, J., Zheng, B. D., Pang, J., Chen, L. J., Lin, H. T., & Guo,
X. (2015). Simultaneous Determination of 8 Small
Antihypertensive Peptides with Tyrosine at the C-Terminal in
Laminaria japonica Hydrolysates by RP-HPLC Method. Journal
of Food Processing and Preservation, 40(3), 492–501.
https://doi.org/10.1111/jfpp.12628.
Cherry, P., O’Hara, C., Magee, P., McSorley, E. M., & Allsopp, P. J. (2019).
Risks and benefits of consuming edible seaweeds. Nutrition
Reviews, 77(5), 307–329. https://doi.org/10.1093/nutrit/nuy066.
Cheung, R. C. F., Ng, T. B., & Wong, J. H. (2015). Marine peptides:
Bioactivities and applications. Marine Drugs, 13(7), 4006–4043.
https://doi.org/10.3390/md13074006.
Chew, Y. L., Lim, Y. Y., Omar, M., & Khoo, K. S. (2008). Antioxidant
activity of three edible seaweeds from two areas in South East
Asia. LWT, 41(6), 1067–1072.
https://doi.org/10.1016/j.lwt.2007.06.013.
Choudhary, B., Chauhan, O. P., & Mishra, A. (2021). Edible seaweeds: a
potential novel source of bioactive metabolites and nutraceuticals
with human health benefits. Frontiers in Marine Science, 8.
https://doi.org/10.3389/fmars.2021.740054.
Chronakis, I. S., & Madsen, M. (2011). Algal proteins. In Elsevier
eBooks (pp. 353–
394). https://doi.org/10.1533/9780857093639.353.
Cian, R. E., Drago, S. R., De Medina, F. S., & Martínez‐Augustin, O. (2015).
Proteins and Carbohydrates from Red Seaweeds: Evidence for
Beneficial Effects on Gut Function and Microbiota. Marine
Drugs, 13(8), 5358–5383. https://doi.org/10.3390/md13085358.
Cian, R. E., López-Posadas, R., Drago, S. R., De Medina, F. S., & Martínez‐
Augustin, O. (2012). Immunomodulatory Properties of the
Protein Fraction from Phorphyra columbina. Journal of
Agricultural and Food Chemistry, 60(33), 8146–8154.
https://doi.org/10.1021/jf300928j.
Cikoš, A., Šubarić, D., Roje, M., Babić, J., Jerković, I., & Jokić, S. (2022).
Recent advances on macroalgal pigments and their biological
activities (2016–2021). Algal Research, 65, 102748.
https://doi.org/10.1016/j.algal.2022.102748.
Cofrades, S., Benedı, J., Garcimartín, A., Sánchez‐Muniz, F. J., & Jiménez‐
Colmenero, F. (2017). A comprehensive approach to formulation
of seaweed-enriched meat products: From technological
development to assessment of healthy properties. Food Research
International, 99, 1084–1094.
https://doi.org/10.1016/j.foodres.2016.06.029.
Cornish, M. L., & Garbary, D. J. (2010). Antioxidants from macroalgae:
potential applications in human health and nutrition. Algae, 25(4),
155–171. https://doi.org/10.4490/algae.2010.25.4.155.
Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A.,
Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., AlmeidaLima, J., Farias, E. D. S., Leite, E. L., & Rocha, H. a. O. (2010).
Biological activities of sulfated polysaccharides from tropical
seaweeds. Biomed Pharmacother, 64(1), 21–28.
https://doi.org/10.1016/j.biopha.2009.03.005.
Cotas, J., Leandro, A., Pacheco, D., Gonçalves, A. M., & Pereira, L. (2020).
A comprehensive review of the nutraceutical and therapeutic
applications of red seaweeds (Rhodophyta). Life, 10(3), 19.
https://doi.org/10.3390/life10030019.
Coura, C. O., De Araújo, I. W. F., Vanderlei, E. S. O., Rodrigues, J. a. G.,
Quinderé, A. L. G., Fontes, B. P., De Queiroz, I. N. L., De
Menezes, D. B., Bezerra, M. M., Silva, A. a. R. E., Chaves, H. V.,
Jorge, R. J. B., Evangelista, J. S. a. M., & Benevídes, N. M. B.
(2011). Antinociceptive and Anti‐Inflammatory Activities of
Sulphated Polysaccharides from the Red Seaweed Gracilaria
cornea. Basic & Clinical Pharmacology & Toxicology, 110(4),
335–341. https://doi.org/10.1111/j.1742-7843.2011.00811.x.
Culioli, G., Daoudi, M., Ortalo-Magné, A., Valls, R., & Piovetti, L. (2001).
(S)-12-Hydroxygeranylgeraniol-derived diterpenes from the
brown alga Bifurcaria bifurcata. Phytochemistry, 57(4), 529–535.
https://doi.org/10.1016/s0031-9422(01)00042-5.
Da Silva Chagas, F. D., Lima, G. C., Santos, V. I. N. D., Costa, L. E. C., De
Sousa, W. M., Sombra, V. G., De Araújo, D. F., Barros, F. C. N.,
Marinho‐Soriano, E., De Andrade Feitosa, J. P., De Paula, R. C.,
De Sousa Pereira, M. L., & Freitas, A. L. P. (2020). Sulfated
polysaccharide from the red algae Gelidiella acerosa:
Anticoagulant, antiplatelet and antithrombotic effects.
International Journal of Biological Macromolecules, 159, 415–
421. https://doi.org/10.1016/j.ijbiomac.2020.05.012.
Daniel, S., Cornelia, S., & Fred, Z. (2004). UV-A sunscreen from red algae
for protection against premature skin aging. Cosmetics and
Toiletries Manufacture Worldwide.129:139–43.
Das, D., Arulkumar, A., Paramasivam, S., López-Santamarina, A., Del
Carmen Mondragón, A., & Miranda, J. M. (2023). Phytochemical
Constituents, Antimicrobial Properties and Bioactivity of Marine
Red Seaweed (Kappaphycus alvarezii) and Seagrass (Cymodocea
serrulata). Foods, 12(14), 2811.
Surendran et al. JFBE 7(2): 51-68,2024
63
https://doi.org/10.3390/foods12142811.
De Almeida, C. L. F., De Sousa Falcão, H., De Morais Lima, G. R., De
Albuquerque Montenegro, C., Lira, N. S., De Athayde‐Filho, P.
F., Rodrigues, L. C., De Fátima Vanderlei De Souza, M., BarbosaFilho, J. M., & Batista, L. M. (2011). Bioactivities from Marine
Algae of the Genus Gracilaria. International Journal of
Molecular Sciences, 12(7), 4550–4573.
https://doi.org/10.3390/ijms12074550.
De Arruda, M. C. S., Da Silva, M. R. O. B., Cavalcanti, V. L. R., Brandao,
R. M. P. C., De Araújo Viana Marques, D., De Lima, L. R. A.,
Porto, A. L. F., & Bezerra, R. P. (2023). Antitumor lectins from
algae: A systematic review. Algal Research, 70, 102962.
https://doi.org/10.1016/j.algal.2022.102962.
De Corato, U., Salimbeni, R., De Pretis, A., Avella, N., & Patruno, G. (2017).
Antifungal activity of crude extracts from brown and red
seaweeds by a supercritical carbon dioxide technique against fruit
postharvest fungal diseases. Postharvest Biology and Technology,
131, 16–30. https://doi.org/10.1016/j.postharvbio.2017.04.011.
Del Campo, A. M., Fermín-Jiménez, J. A., Fernández-Escamilla, V. V. A.,
Escalante-García, Z. Y., Macías-Rodríguez, M. E., & EstradaGirón, Y. (2021). Improved extraction of carrageenan from red
seaweed (Chondracantus canaliculatus) using ultrasoundassisted methods and evaluation of the yield, physicochemical
properties and functional groups. Food Science and
Biotechnology, 30(7), 901–910. https://doi.org/10.1007/s10068-
021-00935-7.
Domínguez, H. (2013). Algae as a source of biologically active ingredients
for the formulation of functional foods and nutraceuticals. In
Elsevier eBooks (pp. 1–19).
https://doi.org/10.1533/9780857098689.1
Dumay, J., Morançais, M., Munier, M., Guillard, C. L., & Fleurence, J.
(2014). Phycoerythrins. In Advances in Botanical Research (pp.
321–343). https://doi.org/10.1016/b978-0-12-408062-1.00011-1.
Ejaz, A., Batool, R., Khan, M. U., Rauf, A., Akhtar, W., Heydari, M.,
Rehman, S., Shahzad, T., Malik, A., Mosavat, S. H., Plygun, S.,
& Shariati, M. A. (2020). An overview on red algae bioactive
compounds and their pharmaceutical applications. Journal of
Complementary and Integrative Medicine, 17(4).
https://doi.org/10.1515/jcim-2019-0203.
El-Beltagi, H. S., Mohamed, A. A., Mohamed, H. I., Ramadan, K. M. A.,
Barqawi, A. A., & Mansour, A. T. (2022). Phytochemical and
potential properties of seaweeds and their recent applications: a
review. Marine Drugs, 20(6), 342.
https://doi.org/10.3390/md20060342.
Engwa, G. A. (2018). Free radicals and the role of plant phytochemicals as
antioxidants against oxidative Stress-Related diseases. In InTech
eBooks. https://doi.org/10.5772/intechopen.76719.
FAO. (2018). The global status of seaweed production, trade and utilization.
In: Globefish Research Program. vol. 124. Food and Agriculture
Organization of the United Nations, Rome, 120.
Farias, W. R. L., Valente, A. P., Pereira, M. S., & Mourão, P. A. (2000).
Structure and anticoagulant activity of sulfated galactans. Journal
of Biological Chemistry, 275(38), 29299–29307.
https://doi.org/10.1074/jbc.m002422200.
Fernando, I. P. S., KimMisook, SonKwang-Tae, JeongYoonhwa, &
JeonYou-Jin. (2016). Antioxidant activity of marine algal
polyphenolic compounds: A mechanistic approach. Journal of
Medicinal Food, 19(7), 615–628.
https://doi.org/10.1089/jmf.2016.3706.
Fidelis, G. P., Câmara, R. B. G., Queiroz, M. F., Costa, M. S. S. P., Santos,
P. C., Rocha, H. a. O., & Costa, L. S. (2014). Proteolysis, NaOH
and Ultrasound-Enhanced Extraction of Anticoagulant and
Antioxidant Sulfated Polysaccharides from the Edible Seaweed,
Gracilaria birdiae. Molecules, 19(11), 18511–18526.
https://doi.org/10.3390/molecules191118511.
Fleurence, J., Morançais, M., & Dumay, J. (2018). Seaweed proteins. In
Elsevier eBooks (pp. 245–262). https://doi.org/10.1016/b978-0-
08-100722-8.00010-3.
Freitas, M., Pacheco, D., Cotas, J., Mouga, T., Afonso, C., & Pereira, L.
(2021). Red Seaweed Pigments from a Biotechnological
Perspective. Phycology, 2(1), 1–29.
https://doi.org/10.3390/phycology2010001.
García‐Vaquero, M., & Hayes, M. (2015). Red and green macroalgae for fish
and animal feed and human functional food development. Food
Reviews International, 32(1), 15–45.
https://doi.org/10.1080/87559129.2015.1041184.
Garcimartín, A., Benedı, J., Bastida, S., & Sánchez‐Muniz, F. J. (2015).
Aqueous extracts and suspensions of restructured pork formulated
with Undaria pinnatifida, Himanthalia elongata and Porphyra
umbilicalis distinctly affect the in vitro α-glucosidase activity and
glucose diffusion. LWT, 64(2), 720–726.
https://doi.org/10.1016/j.lwt.2015.06.050.
Gomes, L., Monteiro, P., Cotas, J., Gonçalves, A. M., Fernandes, C.,
Gonçalves, T., & Pereira, L. (2022). Seaweeds’ pigments and
phenolic compounds with antimicrobial potential. Biomolecular
Concepts, 13(1), 89–102. https://doi.org/10.1515/bmc-2022-
0003.
Gupta, S., and Abu-Ghannam, N. (2011). Bioactive potential and possible
health effects of edible brown seaweeds. Trends Food Sci.
Technol. 22, 315–326. doi: 10.1016/j.tifs.2011.03.011.
Güven, K. C., Percot, A., & Sezik, E. (2010). Alkaloids in marine algae.
Marine Drugs, 8(2), 269–284.
https://doi.org/10.3390/md8020269.
Hall, A., Fairclough, A., Mahadevan, K., & Paxman, J. (2012). Ascophyllum
nodosum enriched bread reduces subsequent energy intake with
no effect on post-prandial glucose and cholesterol in healthy,
overweight males. A pilot study. Appetite, 58(1), 379–386.
https://doi.org/10.1016/j.appet.2011.11.002.
Hardouin, K., Burlot, A., Umami, A., Tanniou, A., Stiger‐Pouvreau, V.,
Widowati, I., Bedoux, G., & Bourgougnon, N. (2013).
Biochemical and antiviral activities of enzymatic hydrolysates
from different invasive French seaweeds. Journal of Applied
Phycology, 26(2), 1029–1042. https://doi.org/10.1007/s10811-
013-0201-6.
Harnedy, P. A., & FitzGerald, R. J. (2013). In vitro assessment of the
cardioprotective, anti-diabetic and antioxidant potential of
Palmaria palmata protein hydrolysates. Journal of Applied
Phycology, 25(6), 1793–1803. https://doi.org/10.1007/s10811-
013-0017-4.
Harrysson, H., Hayes, M., Eimer, F., Carlsson, N. G., Toth, G. B., &
Undeland, I. (2018, April 28). Production of protein extracts from
Swedish red, green, and brown seaweeds, Porphyra umbilicalis
Kützing, Ulva lactuca Linnaeus, and Saccharina latissima
(Linnaeus) J. V. Lamouroux using three different methods.
Journal of Applied Phycology, 30(6), 3565–3580.
https://doi.org/10.1007/s10811-018-1481-7.
Hayashi, K., Walde, P., Miyazaki, T., Sakayama, K., Nakamura, A., Kameda,
K., Masuda, S., Umakoshi, H., & Kato, K. (2012). Active
Targeting to Osteosarcoma Cells and Apoptotic Cell Death
Induction by the Novel Lectin Eucheuma serra Agglutinin
Isolated from a Marine Red Alga. Journal of Drug Delivery, 2012,
1–11. https://doi.org/10.1155/2012/842785.
He, X., Yamauchi, A., Nakano, T., Yamaguchi, T., & Ochiai, Y. (2019). The
composition and anti-inflammatory effect of polysaccharides
from the red alga Chondrus verrucosus. Fisheries Science, 85(5),
859–865. https://doi.org/10.1007/s12562-019-01336-w.
Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed:
functional food applications and legislation. Journal of Applied
Phycology, 23(3), 543–597. https://doi.org/10.1007/s10811-010-
9632-5.
James, M. J., Gibson, R., & Cleland, L. G. (2000). Dietary polyunsaturated
fatty acids and inflammatory mediator production. The American
Journal of Clinical Nutrition, 71(1), 343S-348S.
https://doi.org/10.1093/ajcn/71.1.343s.
Jaswir, I., Tope, A. T., Raus, R. A., Hammed, A. M., & Ramli, N. (2014).
Study on anti-bacterial potentials of some Malaysian brown
seaweeds. Food Hydrocolloids, 42, 275–279.
https://doi.org/10.1016/j.foodhyd.2014.03.008.
JI, N. K., Kumar, R. N., Bora, A., Amb, M. K., & Chakraborthy, S. (1970).
An Evaluation of the Pigment Composition of Eighteen Marine
Surendran et al. JFBE 7(2): 51-68,2024
64
Macroalgae Collected from Okha Coast, Gulf of Kutch, India.
Our Nature, 7(1), 48–55. https://doi.org/10.3126/on.v7i1.2553.
Jiao, K., Gao, J., Zhou, T., Yu, J., Song, H., Wei, Y., & Gao, X. (2019).
Isolation and purification of a novel antimicrobial peptide from
Porphyra yezoensis. Journal of Food Biochemistry, 43(7).
https://doi.org/10.1111/jfbc.12864.
Kadam, S. U., Álvarez, C., Tiwari, B. K., & O’Donnell, C. P. (2017,
September). Extraction and characterization of protein from Irish
brown seaweed Ascophyllum nodosum. Food Research
International, 99, 1021–1027.
https://doi.org/10.1016/j.foodres.2016.07.018.
Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of
Novel Extraction Technologies for Bioactives from Marine
Algae. Journal of Agricultural and Food Chemistry, 61(20),
4667–4675. https://doi.org/10.1021/jf400819p.
Kanatt, S R. (2023). Antioxidants from the red algae Kappaphycus alvarezii:
In Mishra, P. K., Chatterjee, S., Gautam, R. K., Kakatkar, A. S.,
& Kumar, V. Marine algal carbohydrate and peptide antioxidants.
In Elsevier eBooks (pp. 473–488). https://doi.org/10.1016/b978-
0-323-95086-2.00008-4.
Karnjana, K., Soowannayan, C., & Wongprasert, K. (2019). Ethanolic extract
of the red seaweed Gracilaria fisheri and furanone eradicate
Vibrio harveyi and Vibrio parahaemolyticus biofilms and
ameliorate the bacterial infection in shrimp. Fish & Shellfish
Immunology, 88, 91–101.
https://doi.org/10.1016/j.fsi.2019.01.058.
Kasanah, N., Amelia, W., Mukminin, A., Triyanto, & Isnansetyo, A. (2018).
Antibacterial activity of Indonesian red algae Gracilaria edulis
against bacterial fish pathogens and characterization of active
fractions. Natural Product Research, 33(22), 3303–3307.
https://doi.org/10.1080/14786419.2018.1471079.
Kazłowska, K., Hsu, T., Hou, C., Yang, W., & Tsai, G. (2010b). Antiinflammatory properties of phenolic compounds and crude extract
from Porphyra dentata. Journal of Ethnopharmacology, 128(1),
123–130. https://doi.org/10.1016/j.jep.2009.12.037.
Kellogg, J. J., Grace, M. H., & Lila, M. A. (2014). Phlorotannins from
Alaskan Seaweed Inhibit Carbolytic Enzyme Activity. Marine
Drugs, 12(10), 5277–5294. https://doi.org/10.3390/md12105277.
Kendel, M., Wielgosz-Collin, G., Bertrand, S., Roussakis, C., Bourgougnon,
N., &Bedoux, G. (2015, September 2). Lipid Composition, Fatty
Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria
chordalis from Brittany (France): An Analysis from Nutritional,
Chemotaxonomic, and Antiproliferative Activity Perspectives.
Marine Drugs, 13(9), 5606–5628.
https://doi.org/10.3390/md13095606.
Keyimu, X. G. (2013). The effects of using seaweed on the quality of Asian
noodles. Journal of Food Processing and Technology, 04(03).
https://doi.org/10.4172/2157-7110.1000216.
Khalid, S., Abbas, M., Saeed, F., Bader-Ul-Ain, H., & Ansar Rasul Suleria,
H. (2018). Therapeutic Potential of Seaweed Bioactive
Compounds. Seaweed Biomaterials. IntechOpen. doi:
10.5772/intechopen.74060.
Khan, M. N., Choi, J. S., Lee, M. C., Kim, E., Nam, T. J., Fujii, H., & Hong,
Y. K. (2008). Anti-inflammatory activities of methanol extracts
from various seaweed species. Journal of environmental
biology, 29(4), 465–469. PMID: 19195382.
Khanzada, A. K., Shaikh, W., Kazi, T., Kabir, S., & Soofia, Z. (2007).
antifungal activity, elemental analysis and determination of total
protein of seaweed, Solieria robusta (greville) kylin from the
coast of karachi. Pakistan Journal of Botany, 39(3), 931–937.
http://agris.fao.org/agrissearch/search.do?recordID=PK2007001317.
Khanzada, A.K., Shaikh, W., Kazi, T.G., Kabir, S., & Soofia, Z. (2007).
Antifungal activity, elemental analysis and determination of total
protein of seaweed, Solieria robusta (Greville) Kylin from the
coast of Karachi. Pak J Bot, 39, 931-937.
Kim, E. Y., Kim, Y. R., Nam, T. J., & Kong, I. S. (2012). Antioxidant and
DNA protection activities of a glycoprotein isolated from a
seaweed, Saccharina japonica. International Journal of Food
Science &Amp; Technology, 47(5), 1020–1027.
https://doi.org/10.1111/j.1365-2621.2012.02936.x.
Kim, K., Nam, K., Kurihara, H., & Kim, S. (2008). Potent α-glucosidase
inhibitors purified from the red alga Grateloupia elliptica.
Phytochemistry, 69(16), 2820–2825.
https://doi.org/10.1016/j.phytochem.2008.09.007.
Kim, M. S., Kim, J. Y., Choi, W., & Lee, S. S. (2008). Effects of seaweed
supplementation on blood glucose concentration, lipid profile,
and antioxidant enzyme activities in patients with type 2 diabetes
mellitus. Nutrition Research and Practice, 2(2), 62.
https://doi.org/10.4162/nrp.2008.2.2.62.
Kraan, S. (2013). Pigments and minor compounds in algae. In Elsevier
eBooks (pp. 205–251).
https://doi.org/10.1533/9780857098689.1.205.
Kumagai, Y., Toji, K., Katsukura, S., Morikawa, R., Uji, T., Yasui, H.,
Shimizu, T., & Kishimura, H. (2021). Characterization of ACE
Inhibitory Peptides Prepared from Pyropia pseudolinearis
Protein. Marine Drugs, 19(4), 200.
https://doi.org/10.3390/md19040200.
Kumar, K. S., Ganesan, K., & Rao, P. V. (2008). Antioxidant potential of
solvent extracts of Kappaphycus alvarezii (Doty) Doty – An
edible seaweed. Food Chemistry, 107(1), 289–295.
https://doi.org/10.1016/j.foodchem.2007.08.016.
Kumar, Y., Tarafdar, A., & Badgujar, P. C. (2021). Seaweed as a source of
natural antioxidants: therapeutic activity and food applications.
Journal of Food Quality, 2021, 1–17.
https://doi.org/10.1155/2021/5753391.
Kumoro, A.C., Johnny, D., & Alfilovita, D. (2016). Incorporation of
microalgae and seaweed in instant fried wheat noodles
manufacturing: nutrition and culinary properties
study. international food research journal, 23, 715-722.
Available in
http://ifrj.upm.edu.my/23%20(02)%202016/(36).pdf.
Lafeuille, B., Tamigneaux, É., Berger, K., Provencher, V., & Beaulieu, L.
(2023). Variation of the Nutritional Composition and Bioactive
Potential in Edible Macroalga Saccharina latissima Cultivated
from Atlantic Canada Subjected to Different Growth and
Processing Conditions. Foods, 12(8), 1736.
https://doi.org/10.3390/foods12081736.
Lawrence, K. P., Long, P. F., & Young, A. R. (2019). Mycosporine-Like
amino acids for skin photoprotection. Current Medicinal
Chemistry, 25(40), 5512–5527.
https://doi.org/10.2174/0929867324666170529124237.
Leal, M. C., Munro, M. H. G., Blunt, J. W., Puga, J., Jesus, B., Calado, R.,
Rosa, R., & Madeira, C. (2013). Biogeography and biodiscovery
hotspots of macroalgal marine natural products. Natural Product
Reports, 30(11), 1380. https://doi.org/10.1039/c3np70057g.
Lee, D., Nishizawa, M., Shimizu, Y., & Saeki, H. (2017). Anti-inflammatory
effects of dulse (Palmaria palmata) resulting from the
simultaneous water-extraction of phycobiliproteins and
chlorophyll a. Food Research International, 100, 514–521.
https://doi.org/10.1016/j.foodres.2017.06.040.
Lee, H., Dang, H., Kang, G., Yang, E. J., Park, S., Yoon, W., Jung, J. H.,
Kang, H., & Yoo, E. (2009). Two enone fatty acids isolated from
Gracilaria verrucosa suppress the production of inflammatory
mediators by down-regulating NF-κB and STAT1 activity in
lipopolysaccharide-stimulated RAW 264.7 cells. Archives of
Pharmacal Research, 32(3), 453–462.
https://doi.org/10.1007/s12272-009-1320-0.
Lee, Z. J., Xie, C., Ng, K., & Suleria, H. a. R. (2023). Unraveling the
bioactive interplay: seaweed polysaccharide, polyphenol and their
gut modulation effect. Critical Reviews in Food Science and
Nutrition, 1–24.
https://doi.org/10.1080/10408398.2023.2274453.
Li, K., Li, X. M., Ji, N. Y., & Wang, B. (2007). Natural bromophenols from
the marine red alga Polysiphonia urceolata (Rhodomelaceae):
Structural elucidation and DPPH radical-scavenging activity.
Bioorganic & Medicinal Chemistry, 15(21), 6627–6631.
https://doi.org/10.1016/j.bmc.2007.08.023.
Lim, P., Yang, L., Tan, J., Maggs, C. A., & Brodie, J. (2017). Advancing the
taxonomy of economically important red seaweeds (Rhodophyta).
Surendran et al. JFBE 7(2): 51-68,2024
65
European Journal of Phycology, 52(4), 438–451.
https://doi.org/10.1080/09670262.2017.1365174.
Ling, A. L. M., Yasir, S. M., Matanjun, P., & Bakar, M. F. A. (2014). Effect
of different drying techniques on the phytochemical content and
antioxidant activity of Kappaphycus alvarezii. Journal of Applied
Phycology, 27(4), 1717–1723. https://doi.org/10.1007/s10811-
014-0467-3.
Lomartire, S., & Gonçalves, A. M. M. (2022). An overview of potential
Seaweed-Derived bioactive Compounds for pharmaceutical
applications. Marine Drugs, 20(2), 141.
https://doi.org/10.3390/md20020141.
Lopes, D., Rey, F., Leal, M. C., Lillebø, A. I., Calado, R., & Domingues, R.
M. (2021). Bioactivities of Lipid Extracts and Complex Lipids
from Seaweeds: Current Knowledge and Future Prospects.
Marine Drugs, 19(12), 686. https://doi.org/10.3390/md19120686.
Lozano‐Muñoz, I., & Díaz, N. F. (2020). Minerals in edible seaweed: health
benefits and food safety issues. Critical Reviews in Food Science
and Nutrition, 62(6), 1592–1607.
https://doi.org/10.1080/10408398.2020.1844637.
Machu, L., Misurcova, L., Ambrozova, J. V., Orsavova, J., Mlcek, J., Sochor,
J., & JuríKova, T. (2015). Phenolic content and antioxidant
capacity in algal food products. Molecules, 20(1), 1118–1133.
https://doi.org/10.3390/molecules20011118.
Makkar, F., & Chakraborty, K. (2016). Antidiabetic and anti-inflammatory
potential of sulphated polygalactans from red seaweeds
Kappaphycus alvarezii and Gracilaria opuntia. International
Journal of Food Properties, 20(6), 1326–1337.
https://doi.org/10.1080/10942912.2016.1209216.
Makkar, F., & Chakraborty, K. (2017). Antioxidative sulphated
polygalactans from marine macroalgae as angiotensin-I
converting enzyme inhibitors. Natural Product Research, 32(17),
2100–2106. https://doi.org/10.1080/14786419.2017.1363756.
Makkar, F., & Chakraborty, K. (2018). Antioxidant and anti-inflammatory
oxygenated meroterpenoids from the thalli of red seaweed
Kappaphycus alvarezii. Medicinal Chemistry Research, 27(8),
2016–2026. https://doi.org/10.1007/s00044-018-2210-0.
Makkar, H. P. S., Tran, G., Heuze, V., Giger-Reverdin, S.,Lessire, M., Lebas,
F., &Ankers, P. (2016). Seaweeds for livestock diets: A review.
Animal Feed Science and Technology, 212, 1 17.
https://doi.org/10.1016/j.anifeedsci.2015.09.018.
Manivasagan, P., Bharathiraja, S., Moorthy, M. S., Mondal, S., Seo, H., Lee,
K. D., & Oh, J. (2017). Marine natural pigments as potential
sources for therapeutic applications. Critical Reviews in
Biotechnology, 38(5), 745–761.
https://doi.org/10.1080/07388551.2017.1398713.
Marburger, A. (2003). Alginate und Carrageenane? Eigenschaften,
Gewinnung und Anwendungen in Schule und Hochschule.
Philipps-Universität Marburg.
https://doi.org/10.17192/z2004.0110.
Marinho, G. S., Holdt, S. L., & Angelidaki, I. (2015). Seasonal variations in
the amino acid profile and protein nutritional value of Saccharina
latissima cultivated in a commercial IMTA system. Journal of
Applied Phycology, 27(5), 1991–2000.
https://doi.org/10.1007/s10811-015-0546-0.
Matanjun, P., Mohamed, S., Muhammad, K., & Noordin, M. M. (2010).
Comparison of Cardiovascular Protective Effects of Tropical
Seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and
Sargassum polycystum, on High-Cholesterol/High-Fat Diet in
Rats. Journal of Medicinal Food, 13(4), 792–800.
https://doi.org/10.1089/jmf.2008.1212.
McKim, J. M., Baas, H., Rice, G. P., Willoughby, J. A., Weiner, M. L., &
Blakemore, W. R. (2016). Effects of carrageenan on cell
permeability, cytotoxicity, and cytokine gene expression in
human intestinal and hepatic cell lines. Food and Chemical
Toxicology, 96, 1–10. https://doi.org/10.1016/j.fct.2016.07.006.
Milinovic, J., Mata, P., Diniz, M., Noronha, J.P., 2021. Umami taste in edible
sea-weeds: The current comprehension and perception. Int. J
Gastron. Food Sci. 23. doi: 10.1016/j.ijgfs.2020.100301.
Mohamed, S., Hashim, S. N., & Rahman, H. A. (2012). Seaweeds: A
sustainable functional food for complementary and alternative
therapy. Trends in Food Science and Technology, 23(2), 83–96.
https://doi.org/10.1016/j.tifs.2011.09.001.
Mohammadigheisar, M., Shouldice, V. L., Sands, J. S., Lepp, D., Diarra, M.
S., & Kiarie, E. (2020). Growth performance, breast yield,
gastrointestinal ecology and plasma biochemical profile in broiler
chickens fed multiple doses of a blend of red, brown and green
seaweeds. British Poultry Science, 61(5), 590–598.
https://doi.org/10.1080/00071668.2020.1774512.
Mojzer, E. B., Chen, L., S̆Kerget, M., Knez, Ž., & Bren, U. (2016).
Polyphenols: extraction methods, antioxidative action,
bioavailability and anticarcinogenic effects. Molecules, 21(7),
901. https://doi.org/10.3390/molecules21070901.
Moussavou, G., Kwak, D. H., Obiang-Obonou, B. W., Maranguy, C. a. O.,
Dinzouna-Boutamba, S., Lee, D. H., Pissibanganga, O. G. M., Ko,
K., Seo, J. I., & Choo, Y. (2014). Anticancer effects of different
seaweeds on human colon and breast cancers. Marine Drugs,
12(9), 4898–4911. https://doi.org/10.3390/md12094898.
Murray, M., Dordevic, A. L., Ryan, L., & Bonham, M. P. (2018). The impact
of a single dose of a Polyphenol-Rich seaweed extract on
postprandial glycaemic control in healthy adults: a randomised
Cross-Over trial. Nutrients, 10(3), 270.
https://doi.org/10.3390/nu10030270.
Nakhate, P. H., & Van Der Meer, Y. (2021). A Systematic Review on
Seaweed Functionality: A Sustainable Bio-Based Material.
Sustainability, 13(11), 6174. https://doi.org/10.3390/su13116174.
Namvar, F., Mohamed, S., Fard, S. G., Behravan, J., Mustapha, N. M.,
Alitheen, N. B. M., & Othman, F. (2012). Polyphenol-rich
seaweed (Eucheuma cottonii) extract suppresses breast tumour
via hormone modulation and apoptosis induction. Food
Chemistry, 130(2), 376–382.
https://doi.org/10.1016/j.foodchem.2011.07.054.
Ngo, D., Wijesekara, I., Vo, T., Van Ta, Q., & Kim, S. (2011). Marine foodderived functional ingredients as potential antioxidants in the food
industry: An overview. Food Research International, 44(2), 523–
529. https://doi.org/10.1016/j.foodres.2010.12.030.
Nishinari, K., & Fang, Y. (2017). Relation between structure and
rheological/thermal properties of agar. A mini-review on the
effect of alkali treatment and the role of agaropectin. Food
Structure, 13, 24–34.
https://doi.org/10.1016/j.foostr.2016.10.003.
O’Sullivan, A. M., O’Callaghan, Y. C., O’Grady, M. N., Waldron, D. S.,
Smyth, T. J., O’Brien, N. M., & Kerry, J. P. (2014). An
examination of the potential of seaweed extracts as functional
ingredients in milk. International Journal of Dairy Technology,
67(2), 182–193. https://doi.org/10.1111/1471-0307.12121.
Onofrejová , L., Vašíčková, J., Klejdus, B., Stratil, P., Mišurcová, L.,
Kráčmar, S., Kopecký, J., & Vacek, J. (2010b). Bioactive phenols
in algae: The application of pressurized-liquid and solid-phase
extraction techniques. Journal of Pharmaceutical and Biomedical
Analysis, 51(2), 464–470.
https://doi.org/10.1016/j.jpba.2009.03.027.
Ortíz, J., Romero, N., Robert, P., Araya, J. E., López-Hernández, J., Bozzo,
C. P., Navarrete, E., Osorio, A., & De Oliveira Rios, A. (2006).
Dietary fiber, amino acid, fatty acid and tocopherol contents of
the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food
Chemistry, 99(1), 98–104.
https://doi.org/10.1016/j.foodchem.2005.07.027.
Osman, M.E.H.; Abushady, A.M.; Elshobary, M.E.(2010). In vitro screening
of antimicrobial activity of extracts of some macroalgae collected
from Abu-Qir bay Alexandria, Egypt. Afr. J. Biotechnol.9, 7203–
7208.
Otero, P., Carpena, M., Garcia‐Oliveira, P., Echave, J., Soria-López, A.,
García-Pérez, P., Fraga-Corral, M., Cao, H., Nie, S., Xiao, J.,
Simal-Gándara, J., & Prieto, M. A. (2021). Seaweed
polysaccharides: Emerging extraction technologies, chemical
modifications and bioactive properties. Critical Reviews in Food
Science and Nutrition, 63(13), 1901–1929.
https://doi.org/10.1080/10408398.2021.1969534.
Othman, R., NA, A., MSA, S., NA, F., & A, J. M. (2018). Carotenoid and
chlorophyll profiles in five species of Malaysian seaweed as
Surendran et al. JFBE 7(2): 51-68,2024
66
potential Halal Active Pharmaceutical Ingredient (API).
International Journal on Advanced Science, Engineering and
Information Technology, 8(4–2), 1610.
https://doi.org/10.18517/ijaseit.8.4-2.7041.
Padam, B. S., &Chye, F. Y. (2020). Seaweed components, properties, and
applications. Sustainable Seaweed Technologies, 33–87.
https://doi.org/10.1016/b978-0-12-817943-7.00002-0.
Palani, K., Balasubramanian, B., Malaisamy, A., Maluventhen, V., Anand,
A. V., Al‐Dhabi, N. A., Arasu, M. V., Pushparaj, K., Liu, W., &
Maruthupandian, A. (2022). Sulfated Polysaccharides Derived
from Hypnea valentiae and Their Potential of Antioxidant,
Antimicrobial, and Anticoagulant Activities with In Silico
Docking. Evidence-based Complementary and Alternative
Medicine, 2022, 1–15. https://doi.org/10.1155/2022/3715806.
Pangestuti, R., Siahaan, E. A., & Kim, S. (2018). Photoprotective Substances
Derived from Marine Algae. Marine Drugs, 16(11), 399.
https://doi.org/10.3390/md16110399.
Paniagua‐Michel, J., Olmos-Soto, J., & Morales-Guerrero, E. (2014). Algal
and microbial exopolysaccharides. In Advances in food and
nutrition research (pp. 221–257). https://doi.org/10.1016/b978-0-
12-800268-1.00011-1.
Pati, M. P., Sharma, S. D., Nayak, L., & Panda, C. R. (2016). USES OF
SEAWEED AND ITS APPLICATION TO HUMAN
WELFARE: a REVIEW. International Journal of Pharmacy and
Pharmaceutical Sciences, 8(10), 12.
https://doi.org/10.22159/ijpps.2016v8i10.12740.
Pereira, L. (2018). Therapeutic and nutritional uses of algae. In CRC Press
eBooks. https://doi.org/10.1201/9781315152844.
Pereira, L., & Critchley, A. T. (2020). The COVID-19 novel coronavirus
pandemic 2020: seaweeds to the rescue? Why does substantial,
supporting research about the antiviral properties of seaweed
polysaccharides seem to go unrecognized by the pharmaceutical
community in these desperate times? Journal of Applied
Phycology, 32(3), 1875–1877. https://doi.org/10.1007/s10811-
020-02143-y.
Plaza, M., Cifuentes, A., & Ibáñez, E. (2008). In the search for new functional
food ingredients from algae. Trends in Food Science and
Technology, 19(1), 31–39.
https://doi.org/10.1016/j.tifs.2007.07.012.
Popa, E. G., Reis, R. L., & Gomes, M. E. (2012). The chondrogenic
phenotype of different cells encapsulated in κ‐carrageenan
hydrogels for cartilage regeneration strategies. Biotechnology and
Applied Biochemistry, 59(2), 132–141.
https://doi.org/10.1002/bab.1007.
Porse, H., & Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016
updates, requirements, and outlook. Journal of Applied
Phycology, 29(5), 2187–2200. https://doi.org/10.1007/s10811-
017-1144-0.
Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda,
L. R., Hosokawa, M., & Miyashita, K. (2009). Edible Japanese
seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta:
Chemical, functional and structural evaluation. Food Chemistry,
115(2), 501–508.
https://doi.org/10.1016/j.foodchem.2008.12.047.
Prasasty, V. D., Haryani, B., Hutagalung, R. A., Mulyono, N., Yazid, F.,
Rosmalena, R., & Sinaga, E. (2019). Evaluation of Antioxidant
and Antidiabetic Activities from Red Seaweed (Eucheuma
cottonii). Systematic Reviews in Pharmacy, 10(1), 276–288.
https://www.bibliomed.org/?mno=302644999.
Pushparaj, A. (2014). Antibacterial activity of Kappaphycus alvarezii and
Ulva lactuca extracts against human pathogenic bacteria. Int. J.
Curr. Microbiol. Appl. Sci. 3(1): 432-436.
https://www.ijcmas.com/vol-3-1/A.Pushparaj,%20et%20al.pdf.
Qin, Y. (2018). Applications of bioactive seaweed substances in functional
food products. In Elsevier eBooks (pp. 111–134).
https://doi.org/10.1016/b978-0-12-813312-5.00006-6.
Qin, Y. (2018). Seaweed Hydrocolloids as Thickening, Gelling, and
Emulsifying Agents in Functional Food Products. Bioactive
Seaweeds for Food Applications, 135–152.
https://doi.org/10.1016/b978-0-12-813312-5.00007-8.
Quitral, V., Sepúlveda, M., Gamero-Vega, G., & Jiménez, P. (2022).
Seaweeds in bakery and farinaceous foods: A mini-review.
International Journal of Gastronomy and Food Science, 28,
100403. https://doi.org/10.1016/j.ijgfs.2021.100403.
Rajauria, G., Jaiswal, A. K., Abu-Gannam, N., & Gupta, S. (2012).
Antimicrobial, antioxidant and free radical-scavenging capacity
of brown seaweed Himanthalia elongata from the western coast
of Ireland. Journal of Food Biochemistry, 37(3), 322–335.
https://doi.org/10.1111/j.1745-4514.2012.00663.x.
Rathore, S., Chaudhary, D. R., Boricha, G., Ghosh, A., Bhatt, B., Zodape, S.
T., & Patolia, J. S. (2009). Effect of seaweed extract on the
growth, yield and nutrient uptake of soybean (Glycine max) under
rainfed conditions. South African Journal of Botany, 75(2), 351–
355. https://doi.org/10.1016/j.sajb.2008.10.009.
Rawiwan, P., Peng, Y., Paramayuda, I. G. P. B., & Quek, S. Y. (2022). Red
seaweed: A promising alternative protein source for global food
sustainability. Trends in Food Science & Technology, 123, 37–56.
https://doi.org/10.1016/j.tifs.2022.03.003.
Rioux, L., & Turgeon, S. L. (2015). Seaweed carbohydrates. In Elsevier
eBooks (pp. 141–192). https://doi.org/10.1016/b978-0-12-
418697-2.00007-6.
Rodriguez–Amaya, D. B. (2016). Natural food pigments and colorants.
Current Opinion in Food Science, 7, 20–26.
https://doi.org/10.1016/j.cofs.2015.08.004.
Ryu, B., Kim, Y., & Jeon, Y. (2021). Seaweeds and their natural products for
preventing cardiovascular-associated dysfunction. Marine Drugs,
19(9), 507. https://doi.org/10.3390/md19090507.
Samarathunga, J., Wijesekara, I., & Jayasinghe, M. (2022). Seaweed proteins
as a novel protein alternative: Types, extractions, and functional
food applications. Food Reviews International, 39(7), 4236–
4261. https://doi.org/10.1080/87559129.2021.2023564.
Sánchez-Machado, D. I., López-Hernández, J., Paseiro-Losada, P., & LópezCervantes, J. (2004). An HPLC method for the quantification of
sterols in edible seaweeds. Biomedical Chromatography, 18(3),
183–190. https://doi.org/10.1002/bmc.316.
Santo, V. E., Frias, A. M., Caridà, M., Cancedda, R., Gomes, M. E., Mano,
J. F., & Reis, R. L. (2009). Carrageenan-based hydrogels for the
controlled delivery of PDGF-BB in bone tissue engineering
applications. Biomacromolecules, 10(6), 1392–1401.
https://doi.org/10.1021/bm8014973.
Sathuvan, M., Muthu, S., Gopal, V. B., Palani, P., & Rengasamy, R. (2016).
Qualitative and quantitative determination of R-phycoerythrin
from Halymenia floresia (Clemente) C. Agardh by
polyacrylamide gel using electrophoretic elution technique.
Journal of Chromatography A, 1454, 120–126.
https://doi.org/10.1016/j.chroma.2016.05.063.
Schmid, M., Kraft, L. G. K., van der Loos, L. M., Kraft, G. T., Virtue, P.,
Nichols, P. D., & Hurd, C. L. (2018). Southern Australian
seaweeds: A promising resource for omega-3 fatty acids. Food
Chemistry, 265, 70-77.
https://doi.org/10.1016/j.foodchem.2018.05.060.
Sekar, S., & Chandramohan, M. (2007). Phycobiliproteins as a commodity:
trends in applied research, patents and commercialization.
Journal of Applied Phycology, 20(2), 113–136.
https://doi.org/10.1007/s10811-007-9188-1.
Sellimi, S., Kadri, N., Barragan‐Montero, V., Laouer, H., Hajji, M., & Nasri,
M. (2014). Fucans from a Tunisian brown seaweed Cystoseira
barbata: Structural characteristics and antioxidant activity.
International Journal of Biological Macromolecules, 66, 281–
288. https://doi.org/10.1016/j.ijbiomac.2014.02.041.
Senthil, A., Mamatha, B. S., Vishwanath, P., Bhat, K., & Ravishankar, G. A.
(2010). Studies on the development and storage stability of instant
spice adjunct mix from seaweed (Eucheuma). Journal of Food
Science and Technology, 48(6), 712–717.
https://doi.org/10.1007/s13197-010-0165-3.
Shahnaz, L., & Shameel, M. (2009). Chemical composition and bioactivity
of some benthic algae from Karachi Coast of Pakistan.
International Journal on Algae, 11(4), 377–393.
https://doi.org/10.1615/interjalgae.v11.i4.70.
Shan, X., Liu, X., Hao, J., Cai, C., Fan, F., Dun, Y., Zhao, X., Liu, X., & Li,
Surendran et al. JFBE 7(2): 51-68,2024
67
C. (2016). In vitro and in vivo hypoglycemic effects of brown
algal fucoidans. International Journal of Biological
Macromolecules, 82, 249–255.
https://doi.org/10.1016/j.ijbiomac.2015.11.036.
Shannon, E., & Abu‐Ghannam, N. (2016). Antibacterial derivatives of
Marine Algae: An Overview of pharmacological mechanisms and
applications. Marine Drugs, 14(4), 81.
https://doi.org/10.3390/md14040081.
Shannon, E., & Abu‐Ghannam, N. (2019). Seaweeds as nutraceuticals for
health and nutrition. Phycologia, 58(5), 563–577.
https://doi.org/10.1080/00318884.2019.1640533.
Shao, Z., & Duan, D. (2022). The cell wall polysaccharides Biosynthesis in
Seaweeds: A Molecular perspective. Frontiers in Plant Science,
13. https://doi.org/10.3389/fpls.2022.902823.
Shin, E., Hwang, H., Kim, I., & Nam, T. (2011). A glycoprotein from
Porphyra yezoensis produces anti-inflammatory effects in
liposaccharide-stimulated macrophages via the TLR4 signaling
pathway. International Journal of Molecular Medicine.
https://doi.org/10.3892/ijmm.2011.729.
Shu-Hong, Z. (2011). An experimental study on the hypoglycemic effect of
Agar polysaccharide in diabetic rats. Health Medicine Research
and Practice. https://en.cnki.com.cn/Article_en/CJFDTOTALGXBJ201104004.htm.
Simopoulos, A. P. (2008). The importance of the Omega-6/Omega-3 fatty
acid ratio in cardiovascular disease and other chronic diseases.
Experimental Biology and Medicine, 233(6), 674–688.
https://doi.org/10.3181/0711-mr-311.
Sonani, R. R., Rastogi, R. P., Patel, R., & Madamwar, D. (2016). Recent
advances in production, purification and applications of
phycobiliproteins. World Journal of Biological Chemistry, 7(1),
100. https://doi.org/10.4331/wjbc.v7.i1.100.
Souza, R. B., Frota, A. F., Silva, J., Alves, C., Neugebauer, A., Pintéus, S.,
Rodrigues, J. a. G., Cordeiro, E. M. S., De Almeida, R. R.,
Pedrosa, R., & Benevídes, N. M. B. (2018). In vitro activities of
kappa-carrageenan isolated from red marine alga Hypnea
musciformis: Antimicrobial, anticancer and neuroprotective
potential. International Journal of Biological Macromolecules,
112, 1248–1256. https://doi.org/10.1016/j.ijbiomac.2018.02.029.
Stahl, W., Heinrich, U., Jungmann, H., Sies, H., & Tronnier, H. (2000).
Carotenoids and carotenoids plus vitamin E protect against
ultraviolet light-induced erythema in humans. The American
Journal of Clinical Nutrition, 71(3), 795–798.
https://doi.org/10.1093/ajcn/71.3.795.
Stiger‐Pouvreau, V., Bourgougnon, N., & Deslandes, É. (2016).
Carbohydrates from seaweeds. In Elsevier eBooks (pp. 223–274).
https://doi.org/10.1016/b978-0-12-802772-1.00008-7.
Su, Y., Liao, H., & Yang, J. (2022). Purification and Identification of an
ACE-Inhibitory Peptide from Gracilaria tenuistipitata Protein
Hydrolysates. Processes, 10(6), 1128.
https://doi.org/10.3390/pr10061128.
Subbiah, V., Xie, C., Dunshea, F. R., Barrow, C. J., & Suleria, H. a. R. (2022).
The Quest for Phenolic Compounds from Seaweed: Nutrition,
Biological Activities and Applications. Food Reviews
International, 39(8), 5786–5813.
https://doi.org/10.1080/87559129.2022.2094406.
Sudhakar, K., Mamat, R., Samykano, M., Azmi, W., Ishak, W. M. F. W., &
Yusaf, T. (2018). An overview of marine macroalgae as
bioresource. Renewable & Sustainable Energy Reviews, 91, 165–
179. https://doi.org/10.1016/j.rser.2018.03.100.
Sun, Y., Zhang, N., Zhou, J., Dong, S., Zhang, X., Guo, L., & Guo, G. (2020).
Distribution, Contents, and Types of Mycosporine-Like Amino
Acids (MAAs) in Marine Macroalgae and a Database for MAAs
Based on These Characteristics. Marine Drugs, 18(1), 43.
https://doi.org/10.3390/md18010043.
Tabarsa, M., You, S. H., Dabaghian, E. H., & Surayot, U. (2018). Watersoluble polysaccharides from Ulva intestinalis : Molecular
properties, structural elucidation and immunomodulatory
activities. Journal of Food and Drug Analysis, 26(2), 599–608.
https://doi.org/10.1016/j.jfda.2017.07.016.
Tanna, B., & Mishra, A. (2019). Nutraceutical potential of seaweed
polysaccharides: structure, bioactivity, safety, and toxicity.
Comprehensive Reviews in Food Science and Food Safety, 18(3),
817–831. https://doi.org/10.1111/1541-4337.12441.
Thanigaivel, S., Vidhya Hindu, S., Vijayakumar, S., Mukherjee, A.,
Chandrasekaran, N., & Thomas, J. (2015). Differential solvent
extraction of two seaweeds and their efficacy in controlling
Aeromonas salmonicida infection in Oreochromis mossambicus:
A novel therapeutic approach. Aquaculture, 443, 56–64.
https://doi.org/10.1016/j.aquaculture.2015.03.010.
Thiviya, P., Gamage, A., Gama-Arachchige, N. S., Merah, O., & Madhujith,
T. (2022). Seaweeds as a source of functional proteins.
Phycology, 2(2), 216–243.
https://doi.org/10.3390/phycology2020012.
Tiwari, B. K., & Troy, D. J. (2015). Seaweed sustainability – food and
nonfood applications. In Elsevier eBooks (pp. 1–6).
https://doi.org/10.1016/b978-0-12-418697-2.00001-5.
Torres, M. D., Flórez‐Fernández, N., & Domı́Nguez, H. (2019). Integral
utilization of red seaweed for bioactive production. Marine
Drugs, 17(6), 314. https://doi.org/10.3390/md17060314.
Tsuge, K., Okabe, M., Yoshimura, T., Sumi, T., Tachibana, H., & Yamada,
K. (2004). Dietary Effects of Porphyran from Porphyra yezoensis
on Growth and Lipid Metabolism of Sprague-Dawley Rats. Food
Science and Technology Research, 10(2), 147–151.
https://doi.org/10.3136/fstr.10.147.
Unger, T. (2002). The role of the renin-angiotensin system in the
development of cardiovascular disease. The American Journal of
Cardiology, 89(2), 3–9. https://doi.org/10.1016/s0002-
9149(01)02321-9.
Van Netten, C., Cann, S. a. H., Morley, D. R., & Van Netten, J. P. (2000).
Elemental and radioactive analysis of commercially available
seaweed. Sci Total Environ, 255(1–3), 169–175.
https://doi.org/10.1016/s0048-9697(00)00467-8.
Vijay, K., Balasundari, S., Jeyashakila, R., Velayathum, P., Masilan, K., &
Reshma, R. (2017). Proximate and mineral composition of brown
seaweed from the Gulf of Mannar. International Journal of
Fisheries and Aquatic Studies, 5(5), 106-112.
Wang GC, Sun HB, Fan X, Tseng CK (2002) Large-scale isolation and
purification of R-phycoerythrin from red alga Palmaria palmata
using the expanded bed adsorption method. Acta Bot Sin 44:541–
546.
Wang, L., Wang, S., Fu, X., & Sun, L. (2015). Characteristics of an RPhycoerythrin with Two γ Subunits Prepared from Red
Macroalga Polysiphonia urceolata. PLOS ONE, 10(3), e0120333.
https://doi.org/10.1371/journal.pone.0120333.
Wang, T., Jónsdóttir, R., Kristinsson, H. G., Hreggviðsson, G. Ó., Jónsson,
J. Ó., Þorkelsson, G., & Ólafsdóttir, G. (2010). Enzyme-enhanced
extraction of antioxidant ingredients from red algae Palmaria
palmata. LWT, 43(9), 1387–1393.
https://doi.org/10.1016/j.lwt.2010.05.010.
Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell,
K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017).
Algae as nutritional and functional food sources: revisiting our
understanding. Journal of applied phycology, 29, 949–982.
https://doi.org/10.1007/s10811-016-0974-5.
Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto,
H., & Benjakul, S. (2016). Application of spirulina platensis on
ice cream and soft cheese concerning their nutritional and sensory
perspectives. Jurnal Teknologi, 78(4–2).
https://doi.org/10.11113/jt.v78.8216.
Woo, M., Choi, H., Lee, O., & Lee, B. (2012). The Edible red Alga,
Gracilaria verrucosa, Inhibits Lipid Accumulation and ROS
Production but Improves Glucose Uptake in 3T3‐L1 Cells.
Phytotherapy Research, 27(7), 1102–1105.
https://doi.org/10.1002/ptr.4813.
Yang, T., Yao, H., & Chiang, M. (2015). Red algae (Gelidium amansii)
reduces adiposity via activation of lipolysis in rats with diabetes
induced by streptozotocin-nicotinamide. J Food Drug Anal,
23(4), 758–765. https://doi.org/10.1016/j.jfda.2015.06.003.
Yabuta, Y., Fujimura, H., Kwak, C. S., Enomoto, T., & Watanabe, F. (2010).
Antioxidant Activity of the Phycoerythrobilin Compound Formed
Surendran et al. JFBE 7(2): 51-68,2024
68
from a Dried Korean Purple Laver (Porphyra sp.) during in Vitro
Digestion. Food Science and Technology Research, 16(4), 347–
352. https://doi.org/10.3136/fstr.16.347.
Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M. J.,
Galtier, P., Gott, D. M., Gundert‐Remy, U., Kuhnle, G. G.,
Lambré, C., Leblanc, J., Lillegaard, I. T. L., Moldéus, P.,
Mortensen, A., Oskarsson, A., Stanković, I., Waalkens‐
Berendsen, I., Woutersen, R. A., . . . Dusemund, B. (2018). Re‐
evaluation of carrageenan (E 407) and processed Eucheuma
seaweed (E 407a) as food additives. EFSA Journal, 16(4).
https://doi.org/10.2903/j.efsa.2018.5238.
Yu, P., Wu, Y., Wang, G., Jia, T., & Zhang, Y. (2016). Purification and
bioactivities of phycocyanin. Critical Reviews in Food Science
and Nutrition, 57(18), 3840–3849.
https://doi.org/10.1080/10408398.2016.1167668.
Yuan, H., Song, J., Zhang, W., Li, X., Li, N., & Gao, X. (2006). Antioxidant
activity and cytoprotective effect of κ-carrageenan
oligosaccharides and their different derivatives. Bioorganic &
Medicinal Chemistry Letters, 16(5), 1329–1334.
https://doi.org/10.1016/j.bmcl.2005.11.057.
Yuan, Y., Carrington, M. F., & Walsh, N. (2005). Extracts from dulse
(Palmaria palmata) are effective antioxidants and inhibitors of
cell proliferation in vitro. Food and Chemical Toxicology, 43(7),
1073–1081. https://doi.org/10.1016/j.fct.2005.02.012.
Zava, T., & Zava, D. T. (2011). Assessment of Japanese iodine intake based
on seaweed consumption in Japan: A literature-based analysis.
Thyroid Research, 4(1), 14. https://doi.org/10.1186/1756-6614-4-
14.
Zhou, C., Yu, X., Zhang, Y., He, R., & Ma, H. (2012). Ultrasonic
degradation, purification and analysis of structure and antioxidant
activity of polysaccharide from Porphyra yezoensis Udea.
Carbohydrate Polymers, 87(3), 2046–2051.
https://doi.org/10.1016/j.carbpol.2011.10.026.