Anti-tumor activity of Teucrium polium extracts in MCF-7 breast cancer cells: A comparison with Cisplatin

Document Type : Original research

Authors

1 Department of Cell and Molecular Sciences,Kharazmi Universty, Tehran, Iran.

2 Department of Biology, University of Zabol, Zabol, Iran.

3 Department of Animal Science, University of Zabol, Zabol, Iran.

4 Department of Molecular Biology, Tofigh Daru Co, Tehran, Iran.

5 Department of science payame noor university ,Tehran, Iran

6 Department of Chemistry, University of Zabol, Zabol, Iran.

7 Department of Biotechnology, Alzahra University, Tehran, Iran

8 Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.

Abstract

Breast cancer is one of the most common and lethal cancers affecting women, with lung cancer being the only type with higher mortality rates. Among the challenges in treating breast cancer are tumor recurrence and resistance to existing therapies, highlighting the urgent need for novel therapeutic strategies that offer enhanced efficacy and reduced systemic toxicity. In this context, plant-derived compounds have attracted considerable attention for their roles in cancer prevention and treatment. This study focuses on the cytotoxic effects of Teucrium polium ethanolic extract on human breast cancer MCF-7 cells and the expression levels of key survival-related genes, including Bcl-2 and K-Ras. The MCF-7 cells were treated with varying concentrations of the extract for 48 hours, and cell viability was assessed via the MTT assay. The results demonstrated a significant decrease in cell viability, dropping to approximately 54%, 48%, and 35% after treatment with 2.5, 5, and 10 µg/mL of the extract, respectively. Moreover, the expression of Bcl-2 and K-Ras genes was reduced by approximately 37% and 13%, respectively, compared to the control group. In a comparative analysis, fibroblast viability in response to 20 µg/mL cisplatin was around 48%, while exposure to 20 µg/mL of Teucrium polium extract resulted in a viability of 76%. These findings suggest that Teucrium polium ethanolic extract exhibits substantial cytotoxic and anti-proliferative effects against MCF-7 cells, potentially through its impact on the expression of Bcl-2 and K-Ras, which are critical in regulating cancer cell proliferation and survival.

Keywords

Main Subjects

Aguirre, A. J., Bardeesy, N., Sinha, M., Lopez, L., Tuveson, D. A., Horner,
J., Redston, M. S., & DePinho, R. A. (2003). Activated Kras and
Ink4a/Arf deficiency cooperate to produce metastatic pancreatic
ductal adenocarcinoma. Genes & development, 17(24), 3112–
3126. https://doi.org/10.1101/gad.1158703
Afshin, F., Bohlooli, M., Maghsoudi, A., Sheikhnejad, R., Khajeh, M., Ali
Khatibi, A., Ghaffari-Moghaddam, M., Ghamari, F. & Sheibani,
N. (2022). Anti-tumor activity of ginger extracts in MCF-7 breast
cancer cells. Journal of Food and Bioprocess Engineering. 5(2),
189-194. https://doi.org/10.22059/JFABE.2023.350784.1132
Aljaber, A. Y., Alatawi, Z., Asiri, M., Alomrani, N. A., Al‐Aoh, H. A., &
Mustafa, S. K. (2024). A Study of Chemical Composition and
Bioactivity of Folk Medicinal Plant (Teucrium polium). Asian
Journal of Chemical Sciences, 14(6), 148–153.
https://doi.org/10.9734/ajocs/2024/v14i6341
Asadi-Samani, M., Moradi, M. T., Mahmoodnia, L., Alaei, S., Asadi-Samani,
F., & Luther, T. (2017). Traditional uses of medicinal plants to
prevent and treat diabetes; an updated review of ethnobotanical
studies in Iran. Journal of nephropathology, 6(3), 118–125.
https://doi.org/10.15171/jnp.2017.20
Badal, S., Miller, G. J., & Sattley, W. M. (2024). Plant metabolites for
treating diseases (pp. 377–395). Elsevier BV.
https://doi.org/10.1016/b978-0-443-18657-8.00010-4
Behbahani M. (2014). Evaluation of in vitro anticancer activity of Ocimum
basilicum, Alhagi maurorum, Calendula officinalis and their
parasite Cuscuta campestris. PloS one, 9(12), e116049.
https://doi.org/10.1371/journal.pone.0116049
Bong, I., Lim, P., Balraj, P., Sim, Ui., Hang, E., Zakaria, Z. (2006).
Quantitative analysis of the expression of p53 gene in colorectal
carcinoma by using real-time PCR. Trop Biomed 23, 53–59.
Chaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A
Source for Drug Discovery and Development.
https://doi.org/10.3390/ddc3010011
Emami Zeydi A. (2016). Teucrium polium plant extract as a novel anticancer
agent in the near future: Is it possible? Indian journal of cancer,
53(1), 66. https://doi.org/10.4103/0019-509X.180849
Forbes, S., Clements, J., Dawson, E., Bamford, S., Webb, T., Dogan, A.,
Flanagan, A., Teague, J., Wooster, R., Futreal, P. A., & Stratton,
M. R. (2006). COSMIC 2005. British journal of cancer, 94(2),
318–322. https://doi.org/10.1038/sj.bjc.6602928
Haïdara, K., Alachkar, A., Al Moustafa, A., 2011. Teucrium polium plant
extract provokes significant cell death in human lung cancer cells.
Health 3, 366-9. https://doi.org/10.4236/health.2011.36062
Janssen, K. P., Alberici, P., Fsihi, H., Gaspar, C., Breukel, C., Franken, P.,
Rosty, C., Abal, M., El Marjou, F., Smits, R., Louvard, D., Fodde,
R., & Robine, S. (2006). APC and oncogenic KRAS are
synergistic in enhancing Wnt signaling in intestinal tumor
formation and progression. Gastroenterology, 131(4), 1096–1109.
https://doi.org/10.1053/j.gastro.2006.08.011
Kandouz, M., Alachkar, A., Zhang, L., Dekhil, H., Chehna, F., Yasmeen, A.,
Al Moustafa, A.E. (2010). Teucrium polium plant extract inhibits
cell invasion and motility of human prostate cancer cells via the
restoration of the E-cadherin/catenin complex. J.
Ethnopharmacol. 129, 410-5. doi: 10.1016/j.jep.2009.10.035
Khodaei, F., Ahmadi, K., Kiyani, H., Hashemitabar, M., & Rezaei, M.
(2018). Mitochondrial Effects of Teucrium Polium and Prosopis
Farcta Extracts in Colorectal Cancer Cells. Asian Pacific journal
of cancer prevention: APJCP, 19(1), 103–109.
https://doi.org/10.22034/APJCP.2018.19.1.103
Konishi, H., Karakas, B., Abukhdeir, A. M., Lauring, J., Gustin, J. P., Garay,
J. P., Konishi, Y., Gallmeier, E., Bachman, K. E., & Park, B. H.
(2007). Knock-in of mutant K-ras in nontumorigenic human
epithelial cells as a new model for studying K-ras mediated
transformation. Cancer research, 67(18), 8460–8467.
https://doi.org/10.1158/0008-5472.CAN-07-0108
Ljubuncic, P., Dakwar, S., Portnaya, I., Cogan, U., Azaizeh, H., & Bomzon,
A. (2006). Aqueous extracts of Teucrium polium possess
remarkable antioxidant activity in vitro. Evidence-based
complementary and alternative medicine: eCAM, 3(3), 329–338.
https://doi.org/10.1093/ecam/nel028
Merino, D., Lok, S. W., Visvader, J. E., & Lindeman, G. J. (2016). Targeting
BCL-2 to enhance vulnerability to therapy in estrogen receptorpositive breast cancer. Oncogene, 35(15), 1877–1887.
https://doi.org/10.1038/onc.2015.287
Moo, T. A., Sanford, R., Dang, C., & Morrow, M. (2018). Overview of Breast
Cancer Therapy. PET clinics, 13(3), 339–354.
https://doi.org/10.1016/j.cpet.2018.02.006
Movahedi, A., Basir, R., Rahmat, A., Charaffedine, M., & Othman, F. (2014).
Remarkable Anticancer Activity of Teucrium polium on
Hepatocellular Carcinogenic Rats. Evidence-based
complementary and alternative medicine: eCAM, 2014, 726724.
https://doi.org/10.1155/2014/726724
Oh, S.Y., Sohn, Y.W., Park, J.W., Park, H.J., Jeon, H.M., Kim, T.K., Lee,
J.S., Jung, J.E., Jin, X., Chung, Y.G., Choi, Y.K. (2007). You S,
Lee JB, Kim H. Selective cell death of oncogenic Akt-transduced
brain cancer cells by etoposide through reactive oxygen species
mediated damage. Mol Cancer Ther. 8, 2178-87. https://doi.org/
10.1158/1535-7163.MCT-07-0111
Raad, C., Raad, A. & Pandey, S. (2024). Green Tea Leaves and Rosemary
Extracts Selectively Induce Cell Death in Triple-Negative Breast
Cancer Cells and Cancer Stem Cells and Enhance the Efficacy of
Common Chemotherapeutics. Evidence-Based Complementary
and Alternative Medicine. 2024,1-21,
https://doi.org/10.1155/2024/9458716
Rajabalian, S. (2008). Methanolic extract of Teucrium polium L. potentiates
the cytotoxic and apoptotic effects of anticancer drugs of
vincristine, vinblastine and doxorubicin against a panel of
cancerous cell lines. Exp Oncol. 30, 133-8.
Santos, E., Martin-Zanca, D., Reddy, E. P., Pierotti, M. A., Della Porta, G.,
& Barbacid, M. (1984). Malignant activation of a K-ras oncogene
Zahedi et al. JFBE 7(2): 69-74,2024
74
in lung carcinoma but not in normal tissue of the same patient.
Science (New York, N.Y.), 223(4637), 661–664.
https://doi.org/10.1126/science.6695174
Sheikhbahaei, F., Khazaei, M., & Nematollahi-Mahani, S. N. (2018).
Teucrium polium Extract Enhances the Anti-Angiogenesis Effect
of Tranilast on Human Umbilical Vein Endothelial Cells.
Advanced pharmaceutical bulletin, 8(1), 131–139.
https://doi.org/10.15171/apb.2018.016
Suzuki, K., Kazui, T., Yoshida, M., Uno, T., Kobayashi, T., Kimura, T.,
Yoshida, T., & Sugimura, H. (1999). Drug-induced apoptosis and
p53, BCL-2 and BAX expression in breast cancer tissues in vivo
and in fibroblast cells in vitro. Japanese journal of clinical
oncology, 29(7), 323–331. https://doi.org/10.1093/jjco/29.7.323
Verma, S. K., Rai, S., Sidhu, V. K., Chitara, D., & Kumar, P. (2024).
Overview and History of Natural Products. 439–455.
https://doi.org/10.1201/9781003518969-20
Wang, X.F., Shi, Z.M., Wang, X.R., Cao, L., Wang, Y.Y., Zhang, J.X., Yin,
Y., Luo, H., Kang, C.S., Liu, N., Jiang, T. (2012). You YP. MiR181d acts as a tumor suppressor in glioma by targeting K-ras and
Bcl-2. J. Cancer Res. Clin. Oncol. 138, 573-84. doi:
10.1007/s00432-011-1114-x