References
Adnouni, M., Jiang, L., Zhang, X. J., Zhang, L. Z., Pathare, P. B., & Roskilly,
A. P. (2023). Computational modelling for decarbonised drying
of agricultural products: Sustainable processes, energy efficiency,
and quality improvement. Journal of Food Engineering, 338,
111247.
Ahmad, F., Zaidi, S., & Arshad, M. (2021). Postharvest quality assessment
of apple during storage at ambient temperature. Heliyon, 7(8).
Akgun, N. A., & Doymaz, I. (2005). Modelling of olive cake thin-layer
drying process. Journal of food engineering, 68(4), 455-461 .
Arnold, M., & Gramza‐Michałowska, A. (2022). Enzymatic browning in
apple products and its inhibition treatments: A comprehensive
review. Comprehensive Reviews in food science and food safety,
21(6), 5038-5076.
Asrate, D. A., & Ali, A. N. (2025). Review on the recent trends of food dryer
technologies and optimization methods of drying parameters.
Applied Food Research, 100927.
Azoubel, P. M., El-Aouar, Â. A., Tonon, R. V., Kurozawa, L. E., Antonio,
G. C., Murr, F. E., & Park, K. J. (2008). Effect of osmotic
dehydration on the drying kinetics and quality of cashew apple.
International Journal of Food Science & Technology, 44(5), 980-
986.
Babalis, S. J., Papanicolaou, E., Kyriakis, N., & Belessiotis, V. G. (2006).
Evaluation of thin-layer drying models for describing drying
kinetics of figs (Ficus carica). Journal of food engineering, 75(2),
205-214 .
Chen, X. D., & Mujumdar, A. S. (2009). Drying technologies in food
processing: John Wiley & Sons.
Cichowska-Bogusz, J., Figiel, A., Carbonell-Barrachina, A. A., Pasławska,
M., & Witrowa-Rajchert, D. (2020). Physicochemical properties
of dried apple slices: Impact of osmo-dehydration, sonication, and
drying methods. Molecules, 25(5), 1078.
Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2018).
Influence of foam thickness on production of lime juice powder
during foam-mat drying: Experimental and numerical
investigation. Powder technology, 328, 470-484 .
DeMan, J. M., Finley, J. W., Hurst, W. J., & Lee, C. Y. (1999). Principles of
food chemistry: Springer.
El‐Mesery, H. S., Ashiagbor, K., Hu, Z., & Rostom, M. (2024). Mathematical
modeling of thin‐layer drying kinetics and moisture diffusivity
study of apple slices using infrared conveyor‐belt dryer. Journal
of Food Science, 89(3), 1658-1671.
Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: Theory,
modeling, and experimental results. Journal of Food Engineering,
91(4), 572–582.
Ertekin, C., & Yaldiz, O. 2004. Drying of eggplant and selection of a suitable
thin layer drying model. Journal of food engineering, 63(3), 349-
359 .
Falade, K. O., & Solademi, O. J. (2010). Modelling of air drying of fresh and
blanched sweet potato slices. International journal of food science
& technology, 45(2), 278-288 .
Fanta, S. W., Abera, M. K., Ho, Q. T., Verboven, P., Carmeliet, J., & Nicolai,
B. M. (2013). Microscale modeling of water transport in fruit
tissue. Journal of food engineering, 118(2), 229-237.
Hyson, D. A. (2011). A comprehensive review of apples and apple
components and their relationship to human health. Advances in
Nutrition, 2(5), 408–420.
Igwe, J. F., Omereoha, A. G., & Igwe, U. S. (2023). Effect of moisture
absorption and temperature on the thermal properties of dried
tigernut. Journal of Food and Bioprocess Engineering, 6(2), 63-
67.
Inyang, U. E., Oboh, I. O., & Etuk, B. R. (2018). Kinetic models for drying
techniques—food materials. Advances in Chemical Engineering
and Science, 8(02), 27 .
Jia, Z., Liu, Y., & Xiao, H. (2024). Deep Learning Prediction of Moisture and
Color Kinetics of Apple Slices by Long Short-Term Memory as
Affected by Blanching and Hot-Air Drying Conditions.
Processes, 12(8), 1724.
Jin, W., Zhang, M., Sun, Q., Mujumdar, A. S., & Yu, D. (2025). Effects of
ultrasonic-assisted osmotic pretreatment on convective air-drying
assisted radio frequency drying of apple slices. Drying
Technology, 43(1-2), 467-482.
Kahraman, O., Malvandi, A., Vargas, L., & Feng, H. (2021). Drying
characteristics and quality attributes of apple slices dried by a nonthermal ultrasonic contact drying method. Ultrasonics
Sonochemistry, 73, 105510.
Kashaninejad, M., Razavi, S. M. A., & Salahi, M. R. (2021). Drying kinetics
of camel milk cream foam using foam mat drying and study its
effect on the structure and color of the product.
Kashaninejad, M., Najaf Najafi, M., & Shateri, A. (2021). Optimization of
viscoelastic properties of low-fat stirred yogurt using mixtureprocess variable experiments. Journal of Food and Bioprocess
Engineering, 4(2), 160-167.
Krokida, M. K., Karathanos, V. T., & Maroulis, Z. B. (2000). Effect of
osmotic dehydration on color and sorption characteristics of apple
and banana. Drying Technology, 18(4-5), 937-950.
Lemus‐Mondaca, R., Betoret, N., Vega‐Galvez, A., & Lara‐Aravena, E.
2009. Dehydration characteristics of papaya (Carica Pubenscens):
determination of equilibrium moisture content and diffusion
coefficient. Journal of Food Process Engineering, 32(5), 645-
663 .
Lewicki, P. P., & Porzecka-Pawlak, R. (2005). Effect of osmotic dewatering
on apple tissue structure. Journal of Food Engineering, 66(1), 43-
50.
Li, J., Huang, Y., Gao, M., Tie, J., & Wang, G. (2024). Shrinkage properties
of porous materials during drying: a review. Frontiers in
Materials, 11, 1330599.
Liu, X., Qiu, Z., Wang, L., Cheng, Y., Qu, H., & Chen, Y. (2009).
Mathematical modeling for thin layer vacuum belt drying of
Panax notoginseng extract. Energy Conversion and Management,
50(4), 928-932 .
Lopez, A., Iguaz, A., Esnoz, A., & Virseda, P. (2000). Thin-layer drying
behaviour of vegetable wastes from wholesale market. Drying
Technology, 18(4-5), 995-1006 .
Mandala, I. G., Anagnostaras, E. F., & Oikonomou, C. K. (2005). Influence
of osmotic dehydration conditions on apple air-drying kinetics
and their quality characteristics. Journal of Food Engineering, 69,
307-316.
Martynenko, A., & Janaszek, M. A. (2014). Texture changes during drying
of apple slices. Drying Technology, 32(5), 567-577.
Masztalerz, K., Lech, K., Wojdyło, A., Nowicka, P., MichalskaCiechanowska, A., & Figiel, A. (2020). The impact of the osmotic
dehydration process and its parameters on the mass transfer and
quality of dried apples. Drying Technology, 38(4), 1-12.
Menges, H. O., & Ertekin, C. 2006. Mathematical modeling of thin layer
drying of Golden apples. Journal of food engineering, 77(1), 119-
125.
Moon, K. M., Kwon, E. B., Lee, B., & Kim, C. Y. (2020). Recent trends in
controlling the enzymatic browning of fruit and vegetable
products. Molecules, 25(12), 2754.
Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement
and analysis in fresh and processed foods: A review. Food and
bioprocess technology, 6, 36-60.
Ghorghi et al. JFBE 8(1): 51-60,2025
60
Patocka, J., Bhardwaj, K., Klimova, B., Nepovimova, E., Wu, Q., Landi, M.,
... & Wu, W. (2020). Malus domestica: A review on nutritional
features, chemical composition, traditional and medicinal value.
Plants, 9(11), 1408.
Rahman, M. S. (2020). Osmotic dehydration of foods. In Handbook of food
preservation (pp. 459-472). CRC Press.
Rastogi, N. K., Raghavarao, K. S. M. S., & Niranjan, K. (2002). Mass transfer
during osmotic dehydration of banana: Fickian diffusion in
cylindrical configuration. Journal of Food Engineering, 51(4),
315-322.
Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2017). Development of
cantaloupe (Cucumis melo) pulp powder using foam-mat drying
method: Effects of drying conditions on microstructural of mat
and physicochemical properties of powder. Drying Technology,
35(15), 1897-1908 .
Salehi, F., Cheraghi, R., & Rasouli, M. (2022). Mass transfer kinetics (soluble
solids gain and water loss) of ultrasound-assisted osmotic
dehydration of apple slices. Scientific Reports, 12(1), 15392.
Sereno, A. M., Moreira, R., & Martinez, A. (2001). Advances in osmotic
dehydration methods. Trends in Food Science & Technology, 12,
416-426.
Sharma, N., Kaushal, A., Yousuf, A., Kaur, S., & Sharda, R. (2024). Towards
sustainable river health: integrating hydrological modeling to
predict nitrogen and phosphorus loads in the lower Sutlej subbasin, Punjab, India. Water Practice & Technology, 19(9), 3631-
3653.
Sun, J., Hu, X., Zhao, G., Wu, J., Wang, Z., Chen, F., & Liao, X. (2007).
Characteristics of thin-layer infrared drying of apple pomace with
and without hot air pre-drying. Food science and technology
international, 13(2), 91-97 .
Tepe, T. K., & Tepe, B. (2020). The comparison of drying and rehydration
characteristics of intermittent-microwave and hot-air dried-apple
slices. Heat and Mass Transfer, 56(11), 3047-3057.
Torreggiani, D. (1993). Energy consumption in the drying processes. Journal
of Food Process Engineering, 16, 171-184.
Torreggiani, D., & Bertolo, G. (2001). Osmotic pretreatments in fruit
processing: Chemical, physical and structural effects. Journal of
Food Engineering, 49(2-3), 247-253.
https://doi.org/10.1016/S0260-8774(00)00210-7
Vega-Gálvez, A., Lara, E., Flores, V., Di Scala, K., & Lemus-Mondaca, R.
(2012). Effect of selected pretreatments on convective drying
process of blueberries (var. O’neil). Food and Bioprocess
Technology, 5(7), 2797-2804 .
Wojtyś, A., Pietrzyk, S., Grzesińska, K., & Witkowicz, R. (2025).
Ultrasound-Assisted Osmotic Dehydration of Apples in Xylitol
Solution: Effects on Kinetics, Physicochemical Properties and
Antioxidant Activity. Molecules, 30(11), 2304.
Xiao, H.-W., Lin, H., Yao, X.-D., Du, Z.-L., Lou, Z., & Gao, Z.-j. (2009).
Effects of different pretreatments on drying kinetics and quality
of sweet potato bars undergoing air impingement drying.
International Journal of Food Engineering, 5 .)5(
Yadav, A. K., & Singh, S. V. (2014). Osmotic dehydration of fruits and
vegetables: a review. Journal of food science and technology,
51(9), 1654-1673.
Yang, L., Cheng, J., Cui, K., Shen, X., Liu, J., Zhou, X., ... & Liu, B. (2024).
Inhibition of enzymatic browning in freeze-thawed apricot fruit
by combined chlorogenic acid and osmotic dehydration
treatments. Lwt, 198, 116066.
Zielinska, M., & Markowski, M. (2010). Air drying characteristics and
moisture diffusivity of carrots. Chemical Engineering and
Processing: Process Intensification, 49(2), 212-218.