A review of Pickering emulsions-based delivery systems: Encapsulation, enhancing the stability and bioavailability of bioactive compounds

Document Type : Review article

Authors

Department of Food Science and Engineering, College of Agriculture and Natural Resources, Karaj campus, University of Tehran, Karaj, Iran.

10.22059/jfabe.2025.404603.1220

Abstract

Pickering emulsions are surfactant-free mixtures consisting of two immiscible fluids stabilized by solid particles.
These emulsions offer prolonged stability to liquid droplets and resistance to coalescence. In recent decades, interest
in Pickering emulsions has surged due to their superior properties compared to conventional emulsions, particularly
their exceptional stability and versatility across various applications. The compatibility of stabilizing particles, along
with their capacity to encapsulate and release active components, has led to diverse applications in the biomedical,
pharmaceutical, nutraceutical, food, and cosmeceutical industries. With their unique structure, Pickering emulsions
provide stability, biocompatibility, and environmental friendliness, making them promising candidates for drug
delivery. Given the emphasis on the biocompatibility of particle stabilizers, the use of Pickering emulsions has
increasingly focused on encapsulation and delivery, particularly for oral and topical administration. These emulsions
can enhance the bioavailability of poorly soluble bioactive compounds in oral delivery systems while providing
controlled release mechanisms. This review briefly explains the physicochemical properties, preparation methods,
and characterization techniques of Pickering emulsions, highlighting their suitability for delivering bioactive
compounds. We delve into recent advancements in the stability and formulation of Pickering emulsions and their
applications for both oral and topical administration. The review discusses challenges encountered and identifies
opportunities for future research, emphasizing their potential to improve stability and release during gastrointestinal
digestion. 

Keywords

Main Subjects

References
Albert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F., & Huang, N.
(2019). Pickering emulsions: Preparation processes, key
parameters governing their properties and potential for
pharmaceutical applications. Journal of Controlled Release, 309,
302–332. https://doi.org/10.1016/j.jconrel.2019.07.003
Araiza-Calahorra, A., Akhtar, M., & Sarkar, A. (2018). Recent advances in
emulsion-based delivery approaches for curcumin: From
encapsulation to bioaccessibility. Trends in Food Science and
Technology, 71, 155–169.
https://doi.org/10.1016/j.tifs.2017.11.009
Asabuwa Ngwabebhoh, F., Ilkar Erdagi, S., & Yildiz, U. (2018). Pickering
emulsions stabilized nanocellulosic-based nanoparticles for
coumarin and curcumin nanoencapsulations: In vitro release,
anticancer and antimicrobial activities. Carbohydrate Polymers,
201, 317–328. https://doi.org/10.1016/j.carbpol.2018.08.079
Bao, Y., Liu, K., Zheng, Q., Yao, L., & Xu, Y. (2022). A review of
preparation and tribological applications of Pickering emulsion.
Journal of Tribology, 144(1), 011902.
https://doi.org/10.1115/1.4052480
Beladjine, M., Albert, C., Sintès, M., Mekhloufi, G., Gueutin, C., Nicolas,
V., Canette, A., Trichet, M., Tsapis, N., Michel, L., Agnely, F., &
Huang, N. (2023). Pickering emulsions stabilized with
biodegradable nanoparticles for the co-encapsulation of two
active pharmaceutical ingredients. International Journal of
Pharmaceutics, 637, 122870.
https://doi.org/10.1016/j.ijpharm.2023.122870
Ben Cheikh, F., Mabrouk, A. Ben, Magnin, A., Putaux, J.-L., & Boufi, S.
(2021). Chitin nanocrystals as Pickering stabilizer for O/W
emulsions: Effect of the oil chemical structure on the emulsion
properties. Colloids and Surfaces B: Biointerfaces, 200, 111604.
https://doi.org/10.1016/j.colsurfb.2021.111604
Benetti, J. V. M., do Prado Silva, J. T., & Nicoletti, V. R. (2019). SPI
microgels applied to Pickering stabilization of O/W emulsions by
ultrasound and high-pressure homogenization: rheology and
spray drying. Food Research International, 122, 383–391.
https://doi.org/10.1016/j.foodres.2019.04.020
Bi, W., Liyuan, G., Wenjuan, W., & Qiang, X. (2021). Skin targeting of
resveratrol-loaded starch-based Pickering emulsions: preparation,
characterization, and evaluation. Colloid and Polymer Science,
299(8), 1383–1395. https://doi.org/10.1007/s00396-021-04856-z
Boostani, S., Sarabandi, K., Tarhan, O., Rezaei, A., Assadpour, E.,
Rostamabadi, H., Falsafi, S. R., Tan, C., Zhang, F., & Jafari, S.
M. (2024). Multiple Pickering emulsions stabilized by food-grade
particles as innovative delivery systems for bioactive compounds.
Advances in Colloid and Interface Science, 328, 103174.
https://doi.org/10.1016/j.cis.2024.103174
Cahyana, Y., Putri, Y. S. E., Solihah, D. S., Lutfi, F. S., Alqurashi, R. M., &
Marta, H. (2022). Pickering emulsions as vehicles for bioactive
compounds from essential oils. Molecules, 27(22), 7872.
https://doi.org/10.3390/molecules27227872
Calabrese, V., Courtenay, J. C., Edler, K. J., & Scott, J. L. (2018). Pickering
emulsions stabilized by naturally derived or biodegradable
particles. Current Opinion in Green and Sustainable Chemistry,
12, 83–90. https://doi.org/10.1016/j.cogsc.2018.07.002
Cen, S., Li, Z., Guo, Z., Shi, J., Huang, X., Zou, X., & Holmes, M. (2023).
Fabrication of Pickering emulsions stabilized by citrus pectin
modified with β-cyclodextrin and its application in 3D printing.
Carbohydrate Polymers, 312, 120833.
https://doi.org/10.1016/j.carbpol.2023.120833
Chen, J., Wang, X., Wang, Y., & Bing, J. (2023). Pickering emulsion: From
controllable fabrication to biomedical application.
Interdisciplinary Medicine, 1(3), e20230014.
https://doi.org/10.1002/INMD.20230014
Chen, K., Qian, Y., Wang, C., Yang, D., Qiu, X., & Binks, B. P. (2021).
Tumor microenvironment-responsive, high internal phase
Pickering emulsions stabilized by lignin/chitosan oligosaccharide
particles for synergistic cancer therapy. Journal of Colloid and
Interface Science, 591, 352–362.
https://doi.org/10.1016/j.jcis.2021.02.012
Chen, L., Ao, F., Ge, X., & Shen, W. (2020). Food-grade pickering
emulsions: Preparation, stabilization and applications. Molecules,
25, 3202. https://doi.org/10.3390/molecules25143202
Chen, S., Du, Y., Zhang, H., Wang, Q., Gong, Y., Chang, R., Zhang, J.,
Zhang, J., Yuan, Y., Liu, B., Yan, H., & Li, Y. (2022). The lipid
digestion behavior of oil-in-water Pickering emulsions stabilized
by whey protein microgels of various rigidities. Food
Hydrocolloids, 130, 107735.
https://doi.org/10.1016/j.foodhyd.2022.107735
Cheong, A. M., Tan, K. W., Tan, C. P., & Nyam, K. L. (2016). Kenaf
(Hibiscus cannabinus L.) seed oil-in-water Pickering
nanoemulsions stabilised by mixture of sodium caseinate, Tween
20 and β-cyclodextrin. Food Hydrocolloids, 52, 934–941.
https://doi.org/10.1016/j.foodhyd.2015.09.005
Chiappini, C., Martinez, J. O., De Rosa, E., Almeida, C. S., Tasciotti, E., &
Stevens, M. M. (2015). Biodegradable nanoneedles for localized
delivery of nanoparticles in vivo: exploring the biointerface. ACS
Nano, 9(5), 5500–5509. https://doi.org/10.1021/acsnano.5b01490
Cui, C., Wei, Z., Hong, Z., Zong, J., Li, H., Peng, C., Cai, H., & Hou, R.
(2023). Preparation of water-in-oil Pickering emulsion stabilized
by Camellia oleifera seed cake protein and its application as
EGCG delivery system. Lwt, 179, 114656.
https://doi.org/https://doi.org/10.1016/j.lwt.2023.114656
Dai, L., Li, Y., Kong, F., Liu, K., Si, C., & Ni, Y. (2019). Lignin-based
nanoparticles stabilized pickering emulsion for stability
improvement and thermal-controlled release of trans-resveratrol.
ACS Sustainable Chemistry and Engineering, 7(15), 13497–
13504. https://doi.org/10.1021/acssuschemeng.9b02966
Dammak, I., & do Amaral Sobral, P. J. (2018). Formulation optimization of
lecithin-enhanced pickering emulsions stabilized by chitosan
nanoparticles for hesperidin encapsulation. Journal of Food
Engineering, 229, 2–11.
https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.11.001
de Carvalho-Guimarães, F. B., Correa, K. L., de Souza, T. P., Rodríguez
Amado, J. R., Ribeiro-Costa, R. M., & Silva-Júnior, J. O. C.
(2022). A review of Pickering emulsions: perspectives and
applications. Pharmaceuticals, 15(11), 1413.
https://doi.org/10.3390/ph15111413
Deng, W., Li, Y., Wu, L., & Chen, S. (2022). Pickering emulsions stabilized
by polysaccharides particles and their applications: a review.
Food Science and Technology, 42, e24722.
https://doi.org/10.1590/fst.24722
Dickinson, E. (2019). Particle-based stabilization of water-in-water
emulsions containing mixed biopolymers. Trends in Food Science
and Technology, 83, 31–40.
https://doi.org/10.1016/j.tifs.2018.11.004
Ding, B., Ahmadi, S. H., Babak, P., Bryant, S. L., & Kantzas, A. (2023). On
the stability of pickering and classical nanoemulsions: Theory and
experiments. Langmuir, 39(20), 6975–6991.
https://doi.org/10.1021/acs.langmuir.3c00133
Doost, A. S., Nasrabadi, M. N., Kassozi, V., Dewettinck, K., Stevens, C. V,
& Van der Meeren, P. (2019). Pickering stabilization of thymol
through green emulsification using soluble fraction of almond
gum–Whey protein isolate nano-complexes. Food Hydrocolloids,
88, 218–227.
https://doi.org/https://doi.org/10.1016/j.foodhyd.2018.10.009
Ekanem, E. E., Wilson, A., Scott, J. L., Edler, K. J., & Mattia, D. (2022).
Continuous rotary membrane emulsification for the production of
sustainable Pickering emulsions. Chemical Engineering Science,
249, 117328. https://doi.org/10.1016/j.ces.2021.117328
Fan, Y., Luo, D., & Yi, J. (2022). Resveratrol-loaded α-lactalbumin-chitosan
nanoparticle-encapsulated high internal phase Pickering emulsion
Miran and Kamandloo JFBE 8(1): 93-105,2025
102
for curcumin protection and its in vitro digestion profile. Food
Chemistry: X, 15, 100433.
https://doi.org/10.1016/j.fochx.2022.100433
Farshchi-Andisi, A., Salami, M., Miran, M., Siloto, N. A., Askari, G., EmamDjomeh, Z., & Saldana, M. D. A. (2025). Hydrogel composite for
curcumin encapsulation using whey protein isolate and
arabinoxylan extracted from sesame hull waste. International
Journal of Biological Macromolecules, 319, 145575.
https://doi.org/10.1016/j.ijbiomac.2025.145575
Firoozmand, H., & Rousseau, D. (2015). Microbial cells as colloidal
particles: Pickering oil-in-water emulsions stabilized by bacteria
and yeast. Food Research International, 81, 66–73.
https://doi.org/10.1016/j.foodres.2015.10.018
Frelichowska, J., Bolzinger, M. A., Valour, J. P., Mouaziz, H., Pelletier, J.,
& Chevalier, Y. (2009). Pickering w/o emulsions: Drug release
and topical delivery. International Journal of Pharmaceutics,
368(1–2), 7–15. https://doi.org/10.1016/j.ijpharm.2008.09.057
Fu, Y., McClements, D. J., Luo, S., Ye, J., & Liu, C. (2023). Degradation
kinetics of rutin encapsulated in oil‐in‐water emulsions: impact of
particle size. Journal of the Science of Food and Agriculture,
103(2), 770–778. https://doi.org/10.1002/jsfa.12188
Gao, H., Ma, L., Cheng, C., Liu, J., Liang, R., Zou, L., Liu, W., &
McClements, D. J. (2021). Review of recent advances in the
preparation, properties, and applications of high internal phase
emulsions. Trends in Food Science and Technology, 112, 36–49.
https://doi.org/10.1016/j.tifs.2021.03.041
Gauthier, G., & Capron, I. (2021). Pickering nanoemulsions: An overview of
manufacturing processes, formulations, and applications. JCIS
Open, 4, 100036. https://doi.org/10.1016/j.jciso.2021.100036
Ge, S., Xiong, L., Li, M., Liu, J., Yang, J., Chang, R., Liang, C., & Sun, Q.
(2017). Characterizations of Pickering emulsions stabilized by
starch nanoparticles: Influence of starch variety and particle size.
Food Chemistry, 234, 339–347.
https://doi.org/10.1016/j.foodchem.2017.04.150
Gonzalez-Jordan, A., Nicolai, T., & Benyahia, L. (2018). Enhancement of
the particle stabilization of water-in-water emulsions by
modulating the phase preference of the particles. Journal of
Colloid and Interface Science, 530, 505–510.
https://doi.org/10.1016/j.jcis.2018.04.088
Haji, F., Cheon, J., Baek, J., Wang, Q., & Chiu, K. (2022). Application of
Pickering emulsions in probiotic encapsulation- A review.
Current Research in Food Science, 5, 1603–1615.
https://doi.org/10.1016/j.crfs.2022.09.013
Hao, Z., Han, S., Hu, Y., Yu, Y., Wang, Y., Li, C., Gu, Z., Wu, Z., Zhao, Z.,
& Xu, H. (2024). Preparation of pickering emulsions stabilised by
octenyl succinic anhydride modified α-cyclodextrins for
improving storage stability and curcumin bioavailability. LWT,
197, 115883.
https://doi.org/https://doi.org/10.1016/j.lwt.2024.115883
Harman, C. L. G., Patel, M. A., Guldin, S., & Davies, G. L. (2019). Recent
developments in Pickering emulsions for biomedical applications.
Current Opinion in Colloid and Interface Science, 39, 173–189.
https://doi.org/10.1016/j.cocis.2019.01.017
Jiang, H., Sheng, Y., & Ngai, T. (2020). Pickering emulsions: Versatility of
colloidal particles and recent applications. Current Opinion in
Colloid & Interface Science, 49, 1–15.
https://doi.org/10.1016/j.cocis.2020.04.010
Jiao, B., Shi, A., Wang, Q., & Binks, B. P. (2018). High-internal-phase
Pickering emulsions stabilized solely by peanut-protein-isolate
microgel particles with multiple potential applications.
Angewandte Chemie - International Edition, 57(30), 9274–9278.
https://doi.org/10.1002/anie.201801350
Jo, M., Ban, C., Goh, K. K. T., & Choi, Y. J. (2021). Enhancement of the gutretention time of resveratrol using waxy maize starch nanocrystalstabilized and chitosan-coated Pickering emulsions. Food
Hydrocolloids, 112, 106291.
https://doi.org/10.1016/j.foodhyd.2020.106291
Jug, M., Kyeong, B., & Joshua, Y. (2021). Cyclodextrin‑ based Pickering
emulsions: functional properties and drug delivery applications.
Journal of Inclusion Phenomena and Macrocyclic Chemistry,
101(1), 31–50. https://doi.org/10.1007/s10847-021-01097-z
Kamandloo, F., Miran, M., Salami, M., & Buttar, H. S. (2026). Promising
therapeutic applications of alginate and carrageenan for novel
drug delivery strategies: A review of the polysaccharides
extracted from seaweed. In M. S. Kumar, A. Daverey, S. Joshi, H.
S. Buttar, & A. Vaksmaa (Eds.), Marine Biotechnology for
Healthcare (pp. 345–371). Elsevier.
https://doi.org/10.1016/B978-0-443-33122-0.00002-7
Kan, G., Zi, Y., Li, L., Gong, H., Peng, J., Wang, X., & Zhong, J. (2023).
Curcumin-encapsulated hydrophilic gelatin nanoparticle to
stabilize fish oil-loaded Pickering emulsion. Food Chemistry: X,
17, 100590. https://doi.org/10.1016/j.fochx.2023.100590
Kempin, M. V., Kraume, M., & Drews, A. (2020). W/O Pickering emulsion
preparation using a batch rotor-stator mixer – Influence on
rheology, drop size distribution and filtration behavior. Journal of
Colloid And Interface Science, 573, 135–149.
https://doi.org/10.1016/j.jcis.2020.03.103
Keramat, M., Kheynoor, N., & Golmakani, M.-T. (2022). Oxidative stability
of Pickering emulsions. Food Chemistry: X, 14, 100279.
https://doi.org/10.1016/j.fochx.2022.100279
Kou, X., Zhang, X., Ke, Q., & Meng, Q. (2023). Pickering emulsions
stabilized by β-CD microcrystals: Construction and interfacial
assembly mechanism. Frontiers in Nutrition, 10(2).
https://doi.org/10.3389/fnut.2023.1161232
Kramer, S., Cameron, N. R., & Krajnc, P. (2021). Porous polymers from high
internal phase emulsions as scaffolds for biological applications.
Polymers, 13(11), 1786. https://doi.org/10.3390/polym13111786
Li, H., Zhang, X., Wang, Q., Jin, N., Wei, H., & Zhao, Y. (2023). Pickering
emulsion enhanced interfacial catalysis under Taylor flow in a
microchannel reactor. Chemical Engineering Journal, 466,
143258. https://doi.org/10.1016/j.cej.2023.143258
Li, J., Xu, X., Chen, Z., Wang, T., Lu, Z., Hu, W., & Wang, L. (2018).
Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with
thymol as an antibacterial delivery system. Carbohydrate
Polymers, 200, 416–426.
https://doi.org/10.1016/j.carbpol.2018.08.025
Li, L., Wang, W., Ji, S., & Xia, Q. (2024). Soy protein isolate-xanthan gum
complexes to stabilize Pickering emulsions for quercetin delivery.
Food Chemistry, 461, 140794.
https://doi.org/10.1016/j.foodchem.2024.140794
Li, S., Zhang, B., Li, C., Fu, X., & Huang, Q. (2020). Pickering emulsion gel
stabilized by octenylsuccinate quinoa starch granule as lutein
carrier: Role of the gel network. Food Chemistry, 305, 125476.
https://doi.org/10.1016/j.foodchem.2019.125476
Li, W., Li, W., Wan, Y., Zhou, T., & Wang, L. (2023). Thymol‐loaded Zein–
pectin composite nanoparticles as stabilizer to fabricate Pickering
emulsion of star anise essential oil for improved stability and
antimicrobial activity. Journal of Food Science, 88(9), 3807–
3819. https://doi.org/10.1111/1750-3841.16700
Li, Y., Yang, D., Wang, S., Xu, H., & Li, P. (2024). Fabrication and
optimization of pickering emulsion stabilized by lignin
nanoparticles for curcumin encapsulation. ACS Omega, 9(20),
21994–22002. https://doi.org/10.1021/acsomega.3c10395
Li, Z., Wu, H., Yang, M., Xu, D., Chen, J., Feng, H., Lu, Y., Zhang, L., Yu,
Y., & Kang, W. (2018). Stability mechanism of O / W Pickering
emulsions stabilized with regenerated cellulose. Carbohydrate
Polymers, 181, 224–233.
https://doi.org/10.1016/j.carbpol.2017.10.080
Liu, B., Liu, B., Wang, R., & Li, Y. (2021). α-Lactalbumin Self-Assembled
Nanoparticles with Various Morphologies, Stiffnesses, and Sizes
as Pickering Stabilizers for Oil-in-Water Emulsions and Delivery
of Curcumin. Journal of Agricultural and Food Chemistry, 69(8),
2485–2492. https://doi.org/10.1021/acs.jafc.0c06263
Liu, C., Tian, Y., Ma, Z., & Zhou, L. (2023). Pickering Emulsion stabilized
by β-Cyclodextrin and cinnamaldehyde/β-cyclodextrin
composite. Foods, 12(12), 2366.
https://doi.org/10.3390/foods12122366
Low, L. E., Siva, S. P., Kuen, Y., Seng, E., & Tey, T. (2020). Recent advances
of characterization techniques for the formation , physical
properties and stability of Pickering emulsion. Advances in
Miran and Kamandloo JFBE 8(1): 93-105,2025
103
Colloid and Interface Science, 277, 102117.
https://doi.org/10.1016/j.cis.2020.102117
Low, L. E., Tan, L. T. H., Goh, B. H., Tey, B. T., Ong, B. H., & Tang, S. Y.
(2019). Magnetic cellulose nanocrystal stabilized Pickering
emulsions for enhanced bioactive release and human colon cancer
therapy. International Journal of Biological Macromolecules,
127, 76–84. https://doi.org/10.1016/j.ijbiomac.2019.01.037
Lu, T., Gou, H., Rao, H., & Zhao, G. (2021). Recent progress in nanoclaybased Pickering emulsion and applications. Journal of
Environmental Chemical Engineering, 9(5), 105941.
https://doi.org/10.1016/j.jece.2021.105941
Marto, J., Ascenso, A., Simoes, S., Almeida, A. J., & Ribeiro, H. M. (2016).
Pickering emulsions: challenges and opportunities in topical
delivery. Expert Opinion on Drug Delivery, 13(8), 1093–1107.
https://doi.org/10.1080/17425247.2016.1182489
Marto, J., Duarte, A., Simões, S., Gonçalves, L. M., Gouveia, L. F., Almeida,
A. J., & Ribeiro, H. M. (2019). Starch-based pickering emulsions
as platforms for topical antibiotic delivery: In vitro and in vivo
studies. Polymers, 11(1), 108.
https://doi.org/10.3390/polym11010108
Marto, J., Gouveia, L., Jorge, I. M., Duarte, A., Gonçalves, L. M., Silva, S.
M. C., Antunes, F., Pais, A. A. C. C., Oliveira, E., Almeida, A. J.,
& Ribeiro, H. M. (2015). Starch-based Pickering emulsions for
topical drug delivery: A QbD approach. Colloids and Surfaces B:
Biointerfaces, 135, 183–192.
https://doi.org/10.1016/j.colsurfb.2015.07.024
Matos, M., Laca, A., Rea, F., Iglesias, O., Rayner, M., & Gutiérrez, G. (2018).
O/W emulsions stabilized by OSA-modified starch granules
versus non-ionic surfactant: Stability, rheological behaviour and
resveratrol encapsulation. Journal of Food Engineering, 222,
207–217. https://doi.org/10.1016/j.jfoodeng.2017.11.009
McClements, D. J. (2018). Recent developments in encapsulation and release
of functional food ingredients: delivery by design. Current
Opinion in Food Science, 23, 80–84.
https://doi.org/10.1016/j.cofs.2018.06.008
McClements, D. J., Decker, E. A., & Weiss, J. (2007). Emulsion‐based
delivery systems for lipophilic bioactive components. Journal of
Food Science, 72(8), R109–R124. https://doi.org/10.1111/j.1750-
3841.2007.00507.x
McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions:
Formulation, fabrication, properties, performance, biological fate,
and potential toxicity. Critical Reviews in Food Science and
Nutrition, 51(4), 285–330.
https://doi.org/10.1080/10408398.2011.559558
Meng, R., Wu, Z., Xie, Q. T., Zhang, B., Li, X. L., Liu, W. J., Tao, H., & Li,
P. J. (2020). Zein/carboxymethyl dextrin nanoparticles stabilized
pickering emulsions as delivery vehicles: Effect of interfacial
composition on lipid oxidation and in vitro digestion. Food
Hydrocolloids, 108, 106020.
https://doi.org/10.1016/j.foodhyd.2020.106020
Meng, W., Sun, H., Mu, T. H., & Garcia-Vaquero, M. (2024). Exploring
Pickering Emulsions Stabilized by chitosan and multiple seaweed
polyphenols for an efficient protection and delivery of βCarotene. ACS Food Science and Technology, 4(5), 1287–1300.
https://doi.org/10.1021/acsfoodscitech.4c00178
Ming, Y., Xia, Y., & Ma, G. (2022). Aggregating particles on the O/W
interface: Tuning Pickering emulsion for the enhanced drug
delivery systems. Aggregate, 3(2), e162.
https://doi.org/10.1002/agt2.162
Miran, M., Salami, M., Emam-Djomeh, Z., & Ghaffari, S.-B. (2021). Recent
Achievements in the Improvement of Oral Bioavailability of
Curcumin and its Health Benefits. Canadian Journal of Clinical
Nutrition, 9(2), 1–6.
https://doi.org/10.14206/canad.j.clin.nutr.2021.02.01
Moghadam, A. S., Mirmohammad Meiguni, M. S., Salami, M., Askari, G.,
Emam-djomeh, Z., Miran, M., Buttar, H. S., & Brennan, C.
(2024). Characterization of physicochemical properties of mung
bean protein isolate and κ-carrageenan hydrogel as a delivery
system for propolis extract. Food Research International, 197,
115221. https://doi.org/10.1016/j.foodres.2024.115221
Mwangi, W. W., Lim, H. P., Low, L. E., Tey, B. T., & Chan, E. S. (2020).
Food-grade Pickering emulsions for encapsulation and delivery of
bioactives. Trends in Food Science & Technology, 100, 320–332.
https://doi.org/10.1016/j.tifs.2020.04.020
Naji-Tabasi, S., Shakeri, M. sadat, Modiri-Dovom, A., & Shahbazizadeh, S.
(2024). Application of Pistacia atlantica Pickering emulsion-filled
chitosan gel for targeted delivery of curcumin. Food Science and
Nutrition, 12(4), 2809–2817. https://doi.org/10.1002/fsn3.3962
Nejadmansouri, M., Eskandari, M. H., Yousefi, G. H., Riazi, M., & Hosseini,
S. M. H. (2023). Promising application of probiotic
microorganisms as Pickering emulsions stabilizers. Scientific
Reports, 13(1), 15915. https://doi.org/10.1038/s41598-023-
43087-w
Nie, C., Liu, B., Tan, Y., Wu, P., Niu, Y., Fan, G., & Wang, J. (2024).
Synergistic stabilization of high internal phase Pickering
emulsions by peanut isolate proteins and cellulose nanocrystals
for β-carotene encapsulation. International Journal of Biological
Macromolecules, 267, 131196.
https://doi.org/10.1016/j.ijbiomac.2024.131196
Noor, M. A. M., Sèbe, G., & Faure, C. (2025). Monitoring the interfacial
release rate of resveratrol in Pickering emulsions stabilized by
cellulose nanocrystals through the control of the surface coverage.
Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 704, 135429.
https://doi.org/10.1016/j.colsurfa.2024.135429
Peito, S., Peixoto, D., Ferreira-Faria, I., Margarida Martins, A., Margarida
Ribeiro, H., Veiga, F., Marto, J., & Cláudia Paiva-Santos, A.
(2022). Nano- and microparticle-stabilized Pickering emulsions
designed for topical therapeutics and cosmetic applications.
International Journal of Pharmaceutics, 615, 121455.
https://doi.org/10.1016/j.ijpharm.2022.121455
Perrin, L., Gillet, G., Gressin, L., & Desobry, S. (2020). Interest of pickering
emulsions for sustainable micro/nanocellulose in food and
cosmetic applications. Polymers, 12, 2385.
https://doi.org/10.3390/polym12102385
Pickering, S. U. (1907). Emulsions. J. Chem. Soc., Trans., 91, 2001–2021.
https://doi.org/10.1039/CT9079102001
Qin, X., Di, X., Li, Y., Wang, Q., Harold, C., & Liu, G. (2025). Bioactivity
of proanthocyanidin-whey protein isolate stabilized Pickering
emulsion with encapsulated β-carotene. Food Chemistry, 493,
145756. https://doi.org/10.1016/j.foodchem.2025.145756
Ramos, D. M., Sadtler, V., Marchal, P., Lemaitre, C., Benyahia, L., &
Roques-Carmes, T. (2023). Properties of non-conventional direct
O/W Pickering emulsions stabilized by partially hydrophobic
silica particles controlled by rotor-stator or ultrasonic
emulsification. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 673, 131782.
https://doi.org/https://doi.org/10.1016/j.colsurfa.2023.131782
Ramos, G. V. C., Ramírez-López, S., Pinho, S. C. De, Ditchfield, C., &
Moraes, I. C. F. (2025). Starch-based Pickering emulsions for
bioactive compound encapsulation: production, properties, and
applications. Processes, 13(2), 342.
https://doi.org/10.3390/pr13020342
Ramsden W. (1903). Separation of solids in the surface-layers of solutions
and ‘suspensions’ (observations on surface-membranes, bubbles,
emulsions, and mechanical coagulation).—Preliminary account.
Proceedings of the Royal Society of London, 72, 156–164.
https://doi.org/10.1098/rspl.1903.0034
Remanan, M. K., & Zhu, F. (2023). Encapsulation of rutin in Pickering
emulsions stabilized using octenyl succinic anhydride (OSA)
modified quinoa, maize, and potato starch nanoparticles. Food
Chemistry, 405, 134790.
https://doi.org/10.1016/j.foodchem.2022.134790
Ren, G., Liu, J., Shi, J., He, Y., Zhu, Y., Zhan, Y., Lv, J., Liu, L., Huang, Y.,
Huang, M., Fang, W., Lei, Q., & Xie, H. (2023). Improved
antioxidant activity and delivery of peppermint oil Pickering
emulsion stabilized by resveratrol-grafted zein covalent
conjugate/quaternary ammonium chitosan nanoparticles.
International Journal of Biological Macromolecules, 253,
127094. https://doi.org/10.1016/j.ijbiomac.2023.127094
Miran and Kamandloo JFBE 8(1): 93-105,2025
104
Ren, Z., Chen, Z., Zhang, Y., Lin, X., & Li, B. (2020). Characteristics and
rheological behavior of Pickering emulsions stabilized by tea
water-insoluble protein nanoparticles via high-pressure
homogenization. International Journal of Biological
Macromolecules, 151, 247–256.
https://doi.org/10.1016/j.ijbiomac.2020.02.090
Ren, Z., Chen, Z., Zhang, Y., Lin, X., Weng, W., & Li, B. (2023).
Characteristics and in vitro digestion of resveratrol encapsulated
in Pickering emulsions stabilized by tea water-insoluble protein
nanoparticles. Food Chemistry: X, 18, 100642.
https://doi.org/10.1016/j.fochx.2023.100642
Ribeiro, E. F., Morell, P., Nicoletti, V. R., Quiles, A., & Hernando, I. (2021).
Protein- and polysaccharide-based particles used for Pickering
emulsion stabilisation. Food Hydrocolloids, 119, 106839.
https://doi.org/10.1016/j.foodhyd.2021.106839
Rousseau, D. (2013). Trends in structuring edible emulsions with Pickering
fat crystals. Current Opinion in Colloid & Interface Science,
18(4), 283–291. https://doi.org/10.1016/j.cocis.2013.04.009
Saffarionpour, S., & Diosady, L. L. (2022). Curcumin, a potent therapeutic
nutraceutical and its enhanced delivery and bioaccessibility by
pickering emulsions. Drug Delivery and Translational Research,
12(1), 124–157. https://doi.org/10.1007/s13346-021-00936-3
Sarkar, A., Ademuyiwa, V., Stubley, S., Esa, N. H., Goycoolea, F. M., Qin,
X., Gonzalez, F., & Olvera, C. (2018). Pickering emulsions costabilized by composite protein/ polysaccharide particle-particle
interfaces: Impact on in vitro gastric stability. Food
Hydrocolloids, 84, 282–291.
https://doi.org/10.1016/j.foodhyd.2018.06.019
Sarkar, A., & Dickinson, E. (2020). Sustainable food-grade Pickering
emulsions stabilized by plant-based particles. Current Opinion in
Colloid & Interface Science, 49, 69–81.
https://doi.org/10.1016/j.cocis.2020.04.004
Sharkawy, A., Casimiro, F. M., Barreiro, M. F., & Rodrigues, A. E. (2020).
Enhancing trans-resveratrol topical delivery and photostability
through entrapment in chitosan/gum Arabic Pickering emulsions.
International Journal of Biological Macromolecules, 147, 150–
159. https://doi.org/10.1016/j.ijbiomac.2020.01.057
Shi, A., Feng, X., Wang, Q., & Adhikari, B. (2020). Pickering and high
internal phase Pickering emulsions stabilized by protein-based
particles: A review of synthesis, application and prospective.
Food Hydrocolloids, 109, 106117.
https://doi.org/10.1016/j.foodhyd.2020.106117
Silverstein, M. S. (2013). PolyHIPEs: Recent advances in emulsiontemplated porous polymers. Progress in Polymer Science, 39(1),
199–234. https://doi.org/10.1016/j.progpolymsci.2013.07.003
Song, X., Zheng, F., Ma, F., Kang, H., & Ren, H. (2020). The physical and
oxidative stabilities of Pickering emulsion stabilized by starch
particle and small molecular surfactant. Food Chemistry, 303,
125391. https://doi.org/10.1016/j.foodchem.2019.125391
Song, Y., Su, S., Yang, T., Li, B., Li, L., & Zhang, X. (2023). Enhanced
bioaccessibility of curcumin in Pickering emulsions stabilized by
solid lipid particles. LWT, 188, 115481.
https://doi.org/10.1016/j.lwt.2023.115481
Sufi-Maragheh, P., Nikfarjam, N., Deng, Y., & Taheri-Qazvini, N. (2019).
Pickering emulsion stabilized by amphiphilic pH-sensitive starch
nanoparticles as therapeutic containers. Colloids and Surfaces B:
Biointerfaces, 181, 244–251.
https://doi.org/10.1016/j.colsurfb.2019.05.046
Sun, W., Zhang, X., Yao, C., Wang, Q., Jin, N., Lv, H., & Zhao, Y. (2021).
Hydrodynamic characterization of continuous flow of Pickering
droplets with solid nanoparticles in microchannel reactors.
Chemical Engineering Science, 245, 116838.
https://doi.org/10.1016/j.ces.2021.116838
Taherpour, A., & Hashemi, A. (2018). A novel formulation of the pickering
emulsion stabilized with silica nanoparticles and its thermal
resistance at high temperatures. Journal of Dispersion Science
and Technology, 39(12), 1710–1720.
https://doi.org/10.1080/01932691.2018.1461645
Tai, Z., Huang, Y., Zhu, Q., Wu, W., Yi, T., Chen, Z., & Lu, Y. (2020). Utility
of Pickering emulsions in improved oral drug delivery. Drug
Discovery Today, 25(11), 2038–2045.
https://doi.org/https://doi.org/10.1016/j.colsurfb.2019.05.046
Tang, C., Spinney, S. B., Shi, Z., Peng, B., Luo, J., Michael, K., & Tam, C.
(2018). Amphiphilic cellulose nanocrystals for enhanced
Pickering emulsion stabilization Amphiphilic cellulose
nanocrystals for enhanced Pickering emulsion stabilization.
Langmuir, 34(43), 12897–12905.
https://doi.org/https://doi.org/10.1021/acs.langmuir.8b02437
Teixé-Roig, J., Oms-Oliu, G., Odriozola-Serrano, I., & Martín-Belloso, O.
(2023). Emulsion-based delivery systems to enhance the
functionality of bioactive compounds: towards the use of
ingredients from natural, sustainable sources. Foods, 12(7), 1502.
https://doi.org/10.3390/foods12071502
Tenorio-Garcia, E., Araiza-Calahorra, A., Rappolt, M., Simone, E., & Sarkar,
A. (2023). Pickering water‐in‐oil emulsions stabilized solely by
fat crystals. Advanced Materials Interfaces, 10(31), 2300190.
https://doi.org/https://doi.org/10.1002/admi.202300190
Umar, M., Zafar, S., Fikry, M., Medhe, S. V., & Rungraeng, N. (2025). Noncovalent complexes of plant-based proteins-polysaccharides and
their applications to stabilize the delivery systems for bioactive
compounds. Food Reviews International, 1–31.
https://doi.org/10.1080/87559129.2025.2509865
Wang, W., Li, B.-Y., Zhang, M.-J., Su, Y.-Y., Pan, D.-W., Liu, Z., Ju, X.-J.,
Xie, R., Faraj, Y., & Chu, L.-Y. (2023). Microfluidic
emulsification techniques for controllable emulsion production
and functional microparticle synthesis. Chemical Engineering
Journal, 452, 139277. https://doi.org/10.1016/j.cej.2022.139277
Wang, W., Liu, X., Gao, X., Zhou, X., Gao, W., Sang, Y., & Yang, B. (2025).
Characterization, digestive properties and glucose metabolism
regulation of curcumin-loaded Pickering emulsion. Carbohydrate
Polymers, 356, 123408.
https://doi.org/10.1016/j.carbpol.2025.123408
Wang, Z., Dai, B., Tang, X., Che, Z., Hu, F., Shen, C., Wu, W., Shen, B., &
Yuan, H. (2022). Fabrication and In Vitro/Vivo Evaluation of
drug nanocrystals self-stabilized Pickering emulsion for oral
delivery of quercetin. Pharmaceutics, 14, 897.
https://doi.org/https://doi.org/10.3390/pharmaceutics14050897
Wei, Y., Wang, C., Liu, X., Mackie, A., Zhang, M., Dai, L., Liu, J., Mao, L.,
Yuan, F., & Gao, Y. (2022). Co-encapsulation of curcumin and βcarotene in Pickering emulsions stabilized by complex
nanoparticles: Effects of microfluidization and thermal treatment.
Food Hydrocolloids, 122, 107064.
https://doi.org/10.1016/j.foodhyd.2021.107064
Wu, C., Chen, H., Zhang, T., Wang, W., Chen, L., Feng, X., Zhou, F., &
Tang, X. (2025). Recent developments on the freeze-thaw
stability of Pickering emulsions and its application as nutrient
delivery vehicles. Food Hydrocolloids, 158, 110494.
https://doi.org/10.1016/j.foodhyd.2024.110494
Wu, J., & Ma, G. H. (2016). Recent studies of Pickering emulsions: particles
make the difference. Small (Weinheim an Der Bergstrasse,
Germany), 12(34), 4633–4648.
https://doi.org/10.1002/smll.201600877
Xi, Y., Zou, Y., Luo, Z., Qi, L., & Lu, X. (2019). pH-Responsive Emulsions
with β‑Cyclodextrin/Vitamin E Assembled Shells for Controlled
Delivery of Polyunsaturated Fatty Acids. Journal of Agricultural
and Food Chemistry, 67(43), 11931–11941.
https://doi.org/10.1021/acs.jafc.9b04168
Xia, T., Xue, C., & Wei, Z. (2021). Physicochemical characteristics,
applications and research trends of edible Pickering emulsions.
Trends in Food Science and Technology, 107, 1–15.
https://doi.org/10.1016/j.tifs.2020.11.019
Yan, H., Chen, X., Feng, M., Shi, Z., Zhang, W., Wang, Y., Ke, C., & Lin,
Q. (2019). Entrapment of bacterial cellulose nanocrystals
stabilized Pickering emulsions droplets in alginate beads for
hydrophobic drug delivery. Colloids and Surfaces B:
Biointerfaces, 177, 112–120.
https://doi.org/10.1016/j.colsurfb.2019.01.057
Yang, H., Su, Z., Meng, X., Zhang, X., Kennedy, J. F., & Liu, B. (2020).
Fabrication and characterization of Pickering emulsion stabilized
by soy protein isolate-chitosan nanoparticles. Carbohydrate
Miran and Kamandloo JFBE 8(1): 93-105,2025
105
Polymers, 247, 116712.
https://doi.org/10.1016/j.carbpol.2020.116712
Yang, Y., Fang, Z., Chen, X., Zhang, W., Xie, Y., Chen, Y., Liu, Z., & Yuan,
W. (2017). An overview of pickering emulsions: Solid-particle
materials, classification, morphology, and applications. Frontiers
in Pharmacology, 8, 287.
https://doi.org/10.3389/fphar.2017.00287
Yang, Z., Yan, J., Duan, Y., Dai, L., Wang, Y., Sun, Q., McClements, D. J.,
& Xu, X. (2023). Hydrolyzed rice glutelin nanoparticles as
particulate emulsifier for Pickering emulsion: Structure,
interfacial properties, and application for encapsulating curcumin.
Food Hydrocolloids, 134, 108105.
https://doi.org/10.1016/j.foodhyd.2022.108105
Yi, J., Gan, C., Wen, Z., Fan, Y., & Wu, X. (2021). Development of pea
protein and high methoxyl pectin colloidal particles stabilized
high internal phase pickering emulsions for β-carotene protection
and delivery. Food Hydrocolloids, 113, 106497.
https://doi.org/10.1016/j.foodhyd.2020.106497
Yi, T., Liu, C., Zhang, J., Wang, F., Wang, J., & Zhang, J. (2017). A new
drug nanocrystal self-stabilized Pickering emulsion for oral
delivery of silybin. European Journal of Pharmaceutical
Sciences, 96, 420–427.
https://doi.org/https://doi.org/10.1016/j.ejps.2016.08.047
Yin, X., Lu, J., Du, W., Wu, Q., Han, L., & Su, S. (2024). Encapsulation of
β-carotene in Pickering emulsions stabilized by self-aggregated
chitosan nanoparticles: Factors affecting β-carotene stability.
International Journal of Biological Macromolecules, 277,
133696. https://doi.org/10.1016/j.ijbiomac.2024.133696
Yu, J., Wang, Q., Zhang, H., Qin, X., Chen, H., Corke, H., Hu, Z., & Liu, G.
(2021). Increased stability of curcumin-loaded pickering
emulsions based on glycated proteins and chitooligosaccharides
for functional food application. Lwt, 148, 111742.
https://doi.org/10.1016/j.lwt.2021.111742
Yu, S., Peng, G., & Wu, D. (2023). Rod-like xylan nanocrystals as stabilizer
towards fabricating oil-in-water pickering emulsions. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 675,
132129. https://doi.org/10.1016/j.colsurfa.2023.132129
Yu, Y., Chen, D., Lee, Y. Y., Chen, N., Wang, Y., & Qiu, C. (2023).
Physicochemical and in vitro digestion properties of curcuminloaded solid lipid nanoparticles with different solid lipids and
emulsifiers. Foods, 12(10), 2045.
https://doi.org/10.3390/foods12102045
Yuan, C., Cheng, C., & Cui, B. (2021). Pickering Emulsions Stabilized by
Cyclodextrin Nanoparticles:A Review. Starch‐Stärke, 73(11–
12), 2100077. https://doi.org/10.1002/star.202100077
Yuan, Q., & Williams, R. A. (2016). CO-stabilisation mechanisms of
nanoparticles and surfactants in Pickering Emulsions produced by
membrane emulsification. Journal of Membrane Science, 497,
221–228. https://doi.org/10.1016/j.memsci.2015.09.028
Zabot, G. L., Schaefer Rodrigues, F., Polano Ody, L., Vinícius Tres, M.,
Herrera, E., Palacin, H., Córdova-Ramos, J. S., Best, I., &
Olivera-Montenegro, L. (2022). Encapsulation of bioactive
compounds for food and agricultural applications. Polymers, 14,
4194. https://doi.org/10.3390/polym14194194
Zeng, X., Zhao, J., Zhong, W., Huang, C., Zhi, Z., Pang, J., & Wu, C. (2024).
Preparation and characterization of fish oil Pickering emulsions
stabilized by resveratrol-loaded gliadin/chitin nanocrystal
composite nanoparticles. Journal of Agricultural and Food
Chemistry, 72(16), 9436–9444.
https://doi.org/10.1021/acs.jafc.3c08012
Zhang, B., Wang, Y., & Lu, R. (2023). Pickering emulsion stabilized by
casein–caffeic acid covalent nanoparticles to enhance the
bioavailability of curcumin in vitro and in vivo. Journal of the
Science of Food and Agriculture, 103(7), 3579–3591.
https://doi.org/10.1002/jsfa.12447
Zhang, J., Dong, F., Liu, C., Nie, J., Feng, S., & Yi, T. (2024). Progress of
drug nanocrystal self-stabilized Pickering emulsions:
Construction, characteristics in vitro, and fate in vivo.
Pharmaceutics, 16, 293. https://doi.org/https://doi.org/10.3390/
pharmaceutics16020293
Zhang, M., Li, X., Zhou, L., Chen, W., & Marchioni, E. (2023). ProteinBased high internal phase pickering emulsions: a review of their
fabrication, composition and future perspectives in the food
industry. Foods, 12, 482. https://doi.org/https://doi.org/10.3390/
foods12030482
Zhang, S., Holmes, M., Ettelaie, R., & Sarkar, A. (2020). Pea protein
microgel particles as Pickering stabilisers of oil-in-water
emulsions: Responsiveness to pH and ionic strength. Food
Hydrocolloids, 102, 105583.
https://doi.org/10.1016/j.foodhyd.2019.105583
Zhang, T., Liu, F., Wu, J., & Ngai, T. (2022). Particuology Pickering
emulsions stabilized by biocompatible particles : A review of
preparation , bioapplication , and perspective. Particuology, 64,
110–120. https://doi.org/10.1016/j.partic.2021.07.003
Zhang, W., Sun, X., Fan, X., Li, M., & He, G. (2018). Pickering emulsions
stabilized by hydrophobically modified alginate nanoparticles:
Preparation and pH-responsive performance in vitro. Journal of
Dispersion Science and Technology, 39(3), 367–374.
https://doi.org/10.1080/01932691.2017.1320223
Zhao, D., Yu, D., Kim, M., Gu, M., Kim, S., Pan, C., Kim, G.-H., & Chung,
D. (2019). Effects of temperature, light, and pH on the stability of
fucoxanthin in an oil-in-water emulsion. Food Chemistry, 291,
87–93. https://doi.org/10.1016/j.foodchem.2019.04.002
Zhao, H., Yang, Y., Chen, Y., Li, J., Wang, L., & Li, C. (2022). A review of
multiple Pickering emulsions: Solid stabilization, preparation,
particle effect, and application. Chemical Engineering Science,
248, 117085. https://doi.org/10.1016/j.ces.2021.117085
Zhou, D., Xin, Y., Wu, B., Jiang, X., Wu, X., Hou, P., Qi, J., & Zhang, J.
(2024). Pickering emulsions stabilized by ternary complexes
involving curcumin-modified zein and polysaccharides with
different charge amounts for encapsulating β-carotene. Food
Chemistry, 433(211), 137338.
https://doi.org/10.1016/j.foodchem.2023.137338
Zhu, F. (2019). Starch based Pickering emulsions: Fabrication, properties,
and applications. Trends in Food Science & Technology, 85, 129–
137. https://doi.org/10.1016/j.tifs.2019.01.012
Zhu, X., Chen, J., Hu, Y., Zhang, N., Fu, Y., & Chen, X. (2021). Tuning
complexation of carboxymethyl cellulose/ cationic chitosan to
stabilize Pickering emulsion for curcumin encapsulation. Food
Hydrocolloids, 110, 106135.
https://doi.org/10.1016/j.foodhyd.2020.106135
Zia, A., Pentzer, E., Thickett, S., & Kempe, K. (2020). Advances and
Opportunities of Oil-in-Oil Emulsions. ACS Applied Materials
and Interfaces, 12(35), 38845–38861.
https://doi.org/10.1021/acsami.0c07993