Document Type : Original research


Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, P.O. Box19395-4741, Tehran, Iran


Nowadays polymer nanocomposites have introduced as a new class of food packaging materials due to their enhanced mechanical, thermal, and barrier properties. In this study PET nano composites were prepared by melt blending of poly (ethylene terephthalate) pellets and mica nanoparticles. The morphology of PET/mica nanocomposites was characterized by X-ray diffraction and transmission electron microscopy (TEM), showing exfoliated/intercalated structures for different concentrations of mica. The crystallization behavior was studied by differential scanning calorimetry (DSC). Incorporation of mica nanoparticles in PET matrix had pronounced effect on crystallization of poly (ethylene terephthalate). Both crystallization rate and degree of crystallinity increased due to nucleation effect of mica nanoparticles. The results of mechanical test indicated that addition of micas to PET matrix caused to slight diminish of tensile strength and ductility of polymer.


Bandyopadhyay, J., Ray, S. S., & Bousmina, M. (2007). Thermal and Thermo-mechanical Properties of Poly (ethylene terephthalate) Nanocomposites. Journal of Industrial and Engineering Chemistry, 13(4), 614-623.

Guan, G., Li, C., Yuan, X., Xiao, Y., Liu, X., & Zhang, D. (2008). New insight into the crystallization behavior of poly (ethylene terephthalate)/clay nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 46(21), 2380-2394.

Imai, Y., Inukai, Y., & Tateyama, H. (2003). Properties of poly (ethylene terephthalate)/layered silicate nanocomposites prepared by two-step polymerization procedure. Polymer journal, 35(3), 230.

Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., & Jasiuk, I. (2005). Experimental trends in polymer nanocomposites—a review. Materials science and engineering: A, 393(1-2), 1-11.

Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A., & Okada, A. (1997). Preparation and mechanical properties of polypropylene− clay hybrids. Macromolecules, 30(20), 6333-6338.

Ke, Y., Long, C., & Qi, Z. (1999). Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. Journal of Applied Polymer Science, 71(7), 1139-1146.

Liu, L., Qi, Z., & Zhu, X. (1999). Studies on nylon 6/clay nanocomposites by melt‐intercalation process. Journal of Applied Polymer Science, 71(7), 1133-1138.

Masenelli‐Varlot, K., Vigier, G., Vermogen, A., Gauthier, C., & Cavaille, J. Y. (2007). Quantitative structural characterization of polymer–clay nanocomposites and discussion of an “ideal” microstructure, leading to the highest mechanical reinforcement. Journal of Polymer Science Part B: Polymer Physics, 45(11), 1243-1251.

Mergler, Y. J., & Schaake, R. P. (2004). Relation between strain hardening and wear resistance of polymers. Journal of applied polymer science, 92(4), 2689-2692.

Sanchez‐Solis, A., Romero‐Ibarra, I., Estrada, M. R., Calderas, F., & Manero, O. (2004). Mechanical and rheological studies on polyethylene terephthalate‐montmorillonite nanocomposites. Polymer Engineering & Science, 44(6), 1094-1102.

Soon, K. H., Harkin‐Jones, E., Rajeev, R. S., Menary, G., McNally, T., Martin, P. J., & Armstrong, C. (2009). Characterisation of melt‐processed poly (ethylene terephthalate)/synthetic mica nanocomposite sheet and its biaxial deformation behaviour. Polymer International, 58(10), 1134-1141.

Sunggi, K. (2007). PET Nanocomposites Development with Nanoscale Materials (Doctoral dissertation, PhD dissertation).

Tsai, T. Y., Li, C. H., Chang, C. H., Cheng, W. H., Hwang, C. L., & Wu, R. J. (2005). Preparation of exfoliated polyester/clay nanocomposites. Advanced materials, 17(14), 1769-1773.

Vermogen, A., Masenelli-Varlot, K., Séguéla, R., Duchet-Rumeau, J., Boucard, S., & Prele, P. (2005). Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules, 38(23), 9661-9669.

Xu, J. L., Li, N. X., Li, B. G., & Chao, P. (2002). Kinetics of isothermal crystallization for pet/montmorillonite nanocomposites. Polymer Materials Science and Engineering, 18(6), 149-152.

Yamada, T., Hao, L., Tada, K., Konagaya, S., & Li, G. (2006). Crystallization characteristics of PET/TiO2 nanocomposites. Material Science, 2, 154-160.

Yano, K., Usuki, A., & Okada, A. (1997). Synthesis and properties of polyimide‐clay hybrid films. Journal of Polymer Science Part A: Polymer Chemistry, 35(11), 2289-2294.

Yu, H., Han, K., & Yu, M. (2004). The rate acceleration in solid‐state polycondensation of PET by nanomaterials. Journal of applied polymer science, 94(3), 971-976.

Zhang, G., Shichi, T., & Takagi, K. (2003). PET-clay hybrids with improved tensile strength. Materials Letters, 57(12), 1858-1862.