Biodegradable kefiran-chitosan-nanocellulose blend film: Production and physical, barrier, mechanical, thermal, and structural properties

Document Type: Original research


Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering, University of Tehran, Karaj - Iran - Postal Code 31587-77871


In this study, biodegradable kefiran-chitosan-nanocellulose blend films were developed and their physical, mechanical, barrier, thermal and structural properties determined. Results showed that adding nanocellulose had not any significant effect on the thickness, moisture content and water solubility. Also, water vapor permeability, tensile strength and lightness increased and the elongation at break, glass transition and melting temperatures, chromaticity parameters of red–green and yellow–blue, total color difference, and whiteness index decreased by increasing the nanocellulose content. Scanning electron microscopy demonstrated that at high concentrations of nanocellulose, the nanoparticle dispersion was not uniform and many agglomerations observed in the surface and cross-section of the nanocomposites. In the end, XRD analysis showed that the dispersed phase of nanocellulose could not indicate its own crystalline peaks in the kefiran-chitosan matrix.


Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., & Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54, 166–173.

Almasi, H., Ghanbarzadeh, B., & Entezami, A. A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46(1), 1–5.

Alparslan, Y. (2017). Antimicrobial and antioxidant capacity of biodegradable gelatin film forming solutions incorporated with different essential oils. Journal of Food Measurement and Characterization, 1–6.

ASTM (1995). Standard test methods for water vapor transmission of material, E 96–95. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Material.

ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. Annual book of ASTM. Philadelphia, PA: American Society for Testing and Materials.

Bamdad, F., Goli, A. H., & Kadivar, M. (2006). Preparation and characterization of proteinous film from lentil (Lens culinaris): Edible film from lentil (Lens culinaris). Food Research International, 39(1), 106–111.

Bonilla, J., & Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17–25.

Cevikbas, A., Yemni, E., Ezzedenn, F. W., Yardimici, T., Cevikbas, U., & Stohs, S. J. (1994). Antitumoural antibacterial and antifungal activities of kefir and kefir grain. Phytotherapy Research, 8(2), 78–82.

Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167–175.

Chetouani, A., Follain, N., Marais, S., Rihouey, C., Elkolli, M., Bounekhel, M., … Le Cerf, D. (2017). Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. International Journal of Biological Macromolecules, 97, 348–356.

Corsello, F. A., Bolla, P. A., Anbinder, P. S., Serradell, M. A., Amalvy, J. I., & Peruzzo, P. J. (2017). Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydrate Polymers, 156, 452–459.

Crouvisier-Urion, K., Lagorce-Tachon, A., Lauquin, C., Winckler, P., Tongdeesoontorn, W., Domenek, S., … Karbowiak, T. (2017). Impact of the homogenization process on the structure and antioxidant properties of chitosan-lignin composite films. Food Chemistry.

Dehnad, D., Mirzaei, H., Emam-Djomeh, Z., Jafari, S.-M., & Dadashi, S. (2014). Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydrate Polymers, 109, 148–154.

Ghanbarzadeh, B., Oromiehie, A. R., Musavi, M., Razmi, E., & Milani, J. (2006). Effect of polyolic plasticizers on rheological and thermal properties of zein resins. Iranian Polymer Journal, 15(10), 779.

Ghasemlou, M., Khodaiyan, F., & Oromiehie, A. (2011). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydrate Polymers, 84(1), 477–483.

Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011a). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. International Journal of Biological Macromolecules, 49(3), 378–384.

Ghasemlou, M., Khodaiyan, F., Oromiehie, A., & Yarmand, M. S. (2011b). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 127(4), 1496–1502.

Gontard, N., Duchez, C., Cuq, J., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1), 39–50.

Huq, T., Salmieri, S., Khan, A., Khan, R. A., Le Tien, C., Riedl, B., … Kamal, M. R. (2012). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydrate Polymers, 90(4), 1757–1763.

Khoo, R. Z., Ismail, H., & Chow, W. S. (2016). Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Procedia Chemistry, 19, 788–794.

Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and characterization of TiO 2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25(5), 1098–1104.

Mandal, A., & Chakrabarty, D. (2015). Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly (vinyl alcohol) & polyacrylamide composite films. Carbohydrate Polymers, 134, 240–250.

Mathew, A. P., & Dufresne, A. (2002). Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules, 3(3), 609–617.

Motedayen, A. A., Khodaiyan, F., & Salehi, E. A. (2013). Development and characterisation of composite films made of kefiran and starch. Food Chemistry, 136(3), 1231–1238.

Nakayama, N., & Hayashi, T. (2007). Preparation and characterization of poly (l-lactic acid)/TiO 2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polymer Degradation and Stability, 92(7), 1255–1264.

Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161–166.

Piermaria, J. A., Mariano, L., & Abraham, A. G. (2008). Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocolloids, 22(8), 1520–1527.

Piermaria, J. A., Pinotti, A., Garcia, M. A., & Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids, 23(3), 684–690.

Piermaria, J., Bosch, A., Pinotti, A., Yantorno, O., Garcia, M. A., & Abraham, A. G. (2011). Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 25(5), 1261–1269.

Qazanfarzadeh, Z., & Kadivar, M. (2016). Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. International Journal of Biological Macromolecules, 91, 1134–1140.

Reddy, J. P., & Rhim, J.-W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.

Sabaghi, M., Maghsoudlou, Y., & Habibi, P. (2015). Enhancing structural properties and antioxidant activity of kefiran films by chitosan addition. Food Structure, 5, 66–71.

Wang, S., & Jing, Y. (2017). Effects of formation and penetration properties of biodegradable montmorillonite/chitosan nanocomposite film on the barrier of package paper. Applied Clay Science, 138, 74–80.

Yang, W., Owczarek, J. S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G. M., … Puglia, D. (2016). Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 94, 800–811.

Zehetmeyer, G., Meira, S. M. M., Scheibel, J. M., da Silva, C. de B., Rodembusch, F. S., Brandelli, A., & Soares, R. M. D. (2017). Biodegradable and antimicrobial films based on poly (butylene adipate-co-terephthalate) electrospun fibers. Polymer Bulletin, 74(8), 3243–3268.

Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014a). Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films. International Journal of Biological Macromolecules, 65, 340–5.

Zolfi, M., Khodaiyan, F., Mousavi, M., & Hashemi, M. (2014b). The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate Polymers, 109, 118–125.