The production of cheese-flavored extruded snack exploiting anti-microbial properties of natural food colors

Document Type : Original research


1 Department of Food Sciences & Technology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran

2 Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Iran

3 Department of Food Science & Technology, Safadasht Branch, Islamic Azad University, Tehran, Iran

4 UR 1268 Biopolymères Interactions Assemblages, INRA, Equipe Fonctions et Interactions des Protéines, B.P. 71627, 44316 Nantes, Cedex 3, France


In this study, the effects of some edible pigments used in the food industry on pathogenic bacteria were investigated. For this purpose, five natural food colors were selected consisted of curcumin, β-carotene, paprika oleoresin, lycopene and turmeric oleoresin. The impacts of each color on bacterial species including Salmonella enterica, Escherichia coli, Bacillus cereus, and Staphylococcus aureus were investigated by using disc diffusion method, individually and collectively. The results have shown that, by combining these colors provided some mixtures with reasonable preventative effects against those bacteria; moreover, mixtures which contained curcumin or turmeric oleoresin demonstrated a better inhibitory effect in compare to mixtures lack of those colors. Consequently, the best synergetic inhibitory effect was related to a mixture of curcumin–beta-carotene–paprika (CBP) on Bacillus cereus. Furthermore, based on results, a mixture containing curcumin-lycopene was selected and used in snack coating to investigate the antimicrobial properties of cheese-flavored extruded snacks. Therefore, adding these natural colors to food not only increase their acceptability but also enhance the antimicrobial properties.


Alhooei, D., Salami, M., & Moslehi, S. M. (2017). The investigation of the synergistic effect of natural pigments on the antioxidant properties in food industries. Iranian Journal of Food Science and Technology, 14(67), 53-62.
Boo, H.-O., Hwang, S.-J., Bae, C.-S., Park, S.-H., Heo, B.-G., & Gorinstein, S. (2012). Extraction and characterization of some natural plant pigments. Industrial Crops and Products, 40, 129–135.
Costa, P. F. P. da, Ferraz, M. B. M., Ros-Polski, V., Quast, E., Collares Queiroz, F. P., & Steel, C. J. (2010). Functional extruded snacks with lycopene and soy protein. Food Science and Technology, 30(1), 143–151.
Di Mascio, P., Kaiser, S., & Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of Biochemistry and Biophysics, 274(2), 532–538.
Ferreira, F. D., Kemmelmeier, C., Arrotéia, C. C., da Costa, C. L., Mallmann, C. A., Janeiro, V., … Machinski Jr, M. (2013). Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus Link. Food Chemistry, 136(2), 789–793.
Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429.
Han, S., & Yang, Y. (2005). Antimicrobial activity of wool fabric treated with curcumin. Dyes and Pigments, 64(2), 157–161.
Hashem, M. M., Atta, A. H., Arbid, M. S., Nada, S. A., & Asaad, G. F. (2010). Immunological studies on amaranth, sunset yellow and curcumin as food colouring agents in albino rats. Food and Chemical Toxicology, 48(6), 1581–1586.
Hayashi, M., Naknukool, S., Hayakawa, S., Ogawa, M., & Ni’matulah, A.-B. A. (2012). Enhancement of antimicrobial activity of a lactoperoxidase system by carrot extract and β-carotene. Food Chemistry, 130(3), 541–546.
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology.
Jayaprakasha, G. K., Rao, L. J., & Sakariah, K. K. (2006). Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chemistry, 98(4), 720–724.
Khalil, O. A. K., de Faria Oliveira, O. M. M., Vellosa, J. C. R., de Quadros, A. U., Dalposso, L. M., Karam, T. K., … Khalil, N. M. (2012). Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid. Food Chemistry, 133(3), 1001–1005.
Kulpapangkorn, W., & Mai-leang, S. (2012). Effect of plant nutrition on turmeric production. Procedia Engineering, 32, 166–171.
Lal, J., Gupta, S. K., Thavaselvam, D., & Agarwal, D. D. (2012). Design, synthesis, synergistic antimicrobial activity and cytotoxicity of 4-aryl substituted 3, 4-dihydropyrimidinones of curcumin. Bioorganic & Medicinal Chemistry Letters, 22(8), 2872–2876.
Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: a short review. Life Sciences, 78(18), 2081–2087.
Martins, R. M., Pereira, S. V., Siqueira, S., Salomão, W. F., & Freitas, L. A. P. (2013). Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract. Food Research International, 50(2), 657–663.
Moure, A., Cruz, J. M., Franco, D., Domı́nguez, J. M., Sineiro, J., Domı́nguez, H., … Parajó, J. C. (2001). Natural antioxidants from residual sources. Food Chemistry, 72(2), 145–171.
Munawar, N. (2014). The Islamic perspective approach on plant pigments as natural food colourants. Procedia-Social and Behavioral Sciences, 121, 193–203.
Negi, P. S., Jayaprakasha, G. K., Jagan Mohan Rao, L., & Sakariah, K. K. (1999). Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. Journal of Agricultural and Food Chemistry, 47(10), 4297–4300.
Parseh, H., & Shahablavasani, A. (2019). Comparing total anthocyanins, total phenolics and antioxidant activities of extracts (aqueous, organic and anthocyanin) obtained from pomegranate (peel, juice, and seed) and antimicrobial activity of peel extracts on the four pathogenic bacteria. Journal of Food and Bioprocess Engineering, 3(1), 9–22.
Parvathy, K. S., Negi, P. S., & Srinivas, P. (2009). Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chemistry, 115(1), 265–271.
Paulucci, V. P., Couto, R. O., Teixeira, C. C. C., & Freitas, L. A. P. (2013). Optimization of the extraction of curcumin from Curcuma longa rhizomes. Revista Brasileira de Farmacognosia, 23(1), 94–100.
Pennathur, S., Maitra, D., Byun, J., Sliskovic, I., Abdulhamid, I., Saed, G. M., … Abu-Soud, H. M. (2010). Potent antioxidative activity of lycopene: A potential role in scavenging hypochlorous acid. Free Radical Biology and Medicine, 49(2), 205–213.
Rahati Noveir, M. (2018). Effect of sumac (Rhus coriaria) and rosemary (Rosmarinus officinalis) Water extracts on microbial growth changes in ground beef meat. Journal of Food and Bioprocess Engineering, 2(2), 33–40.
sajet AL-Oqaili, R. M., & Salman, B. B. M. M. A. (2014). In vitro antibacterial activity of Solanum lycopersicum extract against some pathogenic bacteria. Food Science and Quality Management, 27, 12-16.
Santos, D. T., Albuquerque, C. L. C., & Meireles, M. A. A. (2011). Antioxidant dye and pigment extraction using a homemade pressurized solvent extraction system. Procedia Food Science, 1, 1581–1588.
Selvam, R., Subramanian, L., Gayathri, R., & Angayarkanni, N. (1995). The anti-oxidant activity of turmeric (Curcuma longa). Journal of Ethnopharmacology, 47(2), 59–67.
Shahid, M., & Mohammad, F. (2013). Recent advancements in natural dye applications: a review. Journal of Cleaner Production, 53, 310–331.
Singh, R. K., Rai, D., Yadav, D., Bhargava, A., Balzarini, J., & De Clercq, E. (2010). Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. European Journal of Medicinal Chemistry, 45(3), 1078–1086.
Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24(6), 345–351.
Zhou, Z., Lin, S., Yue, T., & Lee, T.-C. (2014). Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. Journal of Food Engineering, 126, 133–141.
Zimmer, A. R., Leonardi, B., Miron, D., Schapoval, E., De Oliveira, J. R., & Gosmann, G. (2012). Antioxidant and anti-inflammatory properties of Capsicum baccatum: from traditional use to scientific approach. Journal of Ethnopharmacology, 139(1), 228–233.