Curcumin as a bioactive compound: biological properties and encapsulation methods

Document Type : Review article

Authors

Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Curcumin is a bioactive compound from turmeric which has different biological properties and health benefits such as antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. However, the low solubility, poor bioavailability, and rapid degradation under neutral or alkaline pH conditions or when exposed to light, limit the food applications of curcumin. These problems can be solved by different strategies such as encapsulation. Therefore, different methods such as nanocomplexation, gelation, electro-spraying, complex coacervation, and pH-shifting approach have been applied to improve the solubility, stability, and bioavailability of curcumin. Consequently, the pharmacokinetic properties of curcumin including biological half-life and bioavailability/bio-accessibility can be improved resulting in better clinical and functional efficacy in vivo. Although the potentials of encapsulated forms of curcumin have been extensively studied in the literature, future studies can help to find better methods for developing encapsulation methods for curcumin for commercial and industrial aims. Accordingly, the present study was prepared to review the biological properties of curcumin. After that, the most common methods for the encapsulation of curcumin were also investigated.

Keywords

Abaee, A., Mohammadian, M., & Jafari, S. M. (2017). Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science & Technology, 70, 69-81.
Ahmadi, M., Madadlou, A., & Sabouri, A. A. (2015). Isolation of micro-and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel. Food Chemistry, 174, 97-103.
Ak, T., & Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 174(1), 27-37.
Alavi, F., Emam-Djomeh, Z., Yarmand, M. S., Salami, M., Momen, S., & Moosavi-Movahedi, A. A. (2018). Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 85, 267-280.
Ali, B. H., Marrif, H., Noureldayem, S. A., Bakheit, A. O., & Blunden, G. (2006). Some biological properties of curcumin: A review. Natural Product Communications, 1(6), 1934578X0600100613.
Allegra, A., Innao, V., Russo, S., Gerace, D., Alonci, A., & Musolino, C. (2017). Anticancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer Investigation, 35(1), 1-22.
Aloys, H., Korma, S. A., Alice, T. M., Chantal, N., Ali, A. H., Abed, S. M., & Ildephonse, H. (2016). Microencapsulation by complex coacervation: Methods, techniques, benefits, and applications-A review. American Journal of Food Science and Nutrition Research, 3(6), 188-192.
Babaei, J., Mohammadian, M., & Madadlou, A. (2019). Gelatin as texture modifier and porogen in egg white hydrogel. Food Chemistry, 270, 189-195.
Baspinar, Y., Üstündas, M., Bayraktar, O., & Sezgin, C. (2018). Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharmaceutical Journal, 26(3), 323-334.
Brito-Oliveira, T. C., Bispo, M., Moraes, I. C., Campanella, O. H., & Pinho, S. C. (2017). Stability of curcumin encapsulated in solid lipid microparticles incorporated in cold-set emulsion filled gels of soy protein isolate and xanthan gum. Food Research International, 102, 759-767.
Chaharband, F., Kamalinia, G., Atyabi, F., Mortazavi, S. A., Mirzaie, Z. H., & Dinarvand, R. (2018). Formulation and in vitro evaluation of curcumin-lactoferrin conjugated nanostructures for cancerous cells. Artificial cells, Nanomedicine, and Biotechnology, 46(3), 626-636.
Chen, F. P., Li, B. S., & Tang, C. H. (2015). Nanocomplexation between curcumin and soy protein isolate: Influence on curcumin stability/bioaccessibility and in vitro protein digestibility. Journal of Agricultural and Food Chemistry, 63(13), 3559-3569.
Dabbagh Moghaddam, A., Mohammadian, M., Sharifan, A., & Hadi, S. (2019). Improving the water dispersibility and antioxidant activity of curcumin as a hydrophobic bioactive compound by binding to egg white proteins. Journal of Food and Bioprocess Engineering, 3(1), 61-66.
Dai, L., Zhou, H., Wei, Y., Gao, Y., & McClements, D. J. (2019). Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method. Food Hydrocolloids, 93, 342-350.
Dwivedi, P., Yuan, S., Han, S., Mangrio, F. A., Zhu, Z., Lei, F., ... & Xu, R. X. (2018). Core–shell microencapsulation of curcumin in PLGA microparticles: Programmed for application in ovarian cancer therapy. Artificial cells, Nanomedicine, and Biotechnology, 46(sup3), S481-S491.
Farjami, T., Madadlou, A., & Labbafi, M. (2015). Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocolloids, 50, 159-165.
Geremias-Andrade, I. M., Souki, N. P., Moraes, I. C., & Pinho, S. C. (2017). Rheological and mechanical characterization of curcumin-loaded emulsion-filled gels produced with whey protein isolate and xanthan gum. LWT, 86, 166-173.
Gilani, N., Basharat, H., & Qureshi, H. (2017). Curcumin–A review on multipotential phytocompound. Journal of Coastal Life Medicine, 5(10), 455-458.
Hashemi, B., Madadlou, A., & Salami, M. (2017). Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking. Food Chemistry, 237, 23-29.
Huang, W., Wang, L., Wei, Y., Cao, M., Xie, H., & Wu, D. (2020). Fabrication of lysozyme/κ-carrageenan complex nanoparticles as a novel carrier to enhance the stability and in vitro release of curcumin. International Journal of Biological Macromolecules.
Koohpar, Z. K., Entezari, M., Movafagh, A., & Hashemi, M. (2015). Anticancer activity of curcumin on human breast adenocarcinoma: role of Mcl-1 gene. Iranian Journal of Cancer Prevention, 8(3).
Li, M., Ma, Y., & Ngadi, M. O. (2013). Binding of curcumin to β-lactoglobulin and its effect on antioxidant characteristics of curcumin. Food Chemistry, 141(2), 1504-1511.
Liu, W., Chen, X. D., Cheng, Z., & Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering, 169, 189-195.
Liu, Y., Cai, Y., Ying, D., Fu, Y., Xiong, Y., & Le, X. (2018). Ovalbumin as a carrier to significantly enhance the aqueous solubility and photostability of curcumin: Interaction and binding mechanism study. International Journal of Biological Macromolecules, 116, 893-900.
Liu, Z., Liu, C., Sun, X., Shuaizhong, Z., Yongkai, Y., Wang, D., & Ying, X. (2020). Fabrication and characterization of cold-gelation whey protein-chitosan complex hydrogels for the controlled release of curcumin. Food Hydrocolloids, 105619.
Mai, Z., Chen, J., He, T., Hu, Y., Dong, X., Zhang, H., ... & Zhou, W. (2017). Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Advances, 7(3), 1724-1734.
Mirpoor, S. F., Hosseini, S. M. H., & Yousefi, G. H. (2017). Mixed biopolymer nanocomplexes conferred physicochemical stability and sustained release behavior to introduced curcumin. Food Hydrocolloids, 71, 216-224.
Moghadam, M., Salami, M., Mohammadian, M., Delphi, L., Sepehri, H., Emam-Djomeh, Z., & Moosavi-Movahedi, A. A. (2020). Walnut protein–curcumin complexes: fabrication, structural characterization, antioxidant properties, and in vitro anticancer activity. Journal of Food Measurement and Characterization, 14(2), 876-885.
Mohammadian, M., & Madadlou, A. (2016). Cold-set hydrogels made of whey protein nanofibrils with different divalent cations. International Journal of Biological Macromolecules, 89, 499-506.
Mohammadian, M., Moghadam, M., Salami, M., Emam-Djomeh, Z., Alavi, F., Momen, S., & Moosavi-Movahedi, A. A. (2020). Whey protein aggregates formed by non-toxic chemical cross-linking as novel carriers for curcumin delivery: Fabrication and characterization. Journal of Drug Delivery Science and Technology, 56, 101531.
Mohammadian, M., Salami, M., Alavi, F., Momen, S., Emam-Djomeh, Z., & Moosavi-Movahedi, A. A. (2019b). Fabrication and Characterization of Curcumin-Loaded Complex Coacervates Made of Gum Arabic and Whey Protein Nanofibrils. Food Biophysics, 14(4), 425-436.
Mohammadian, M., Salami, M., Emam-Djomeh, Z., Momen, S., & Moosavi-Movahedi, A. A. (2018). Gelation of oil-in-water emulsions stabilized by heat-denatured and nanofibrillated whey proteins through ion bridging or citric acid-mediated cross-linking. International Journal of Biological Macromolecules, 120, 2247-2258.
Mohammadian, M., Salami, M., Momen, S., Alavi, F., Emam-Djomeh, Z., & Moosavi-Movahedi, A. A. (2019a). Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocolloids, 87, 902-914.
Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: miniperspective. Journal of Medicinal Chemistry, 60(5), 1620-1637.
Nikoo, A. M., Kadkhodaee, R., Ghorani, B., Razzaq, H., & Tucker, N. (2018). Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. International Journal of Biological Macromolecules, 116, 208-216.
Niu, B., Shao, P., Luo, Y., & Sun, P. (2020). Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocolloids, 99, 105376.
Pan, K., Luo, Y., Gan, Y., Baek, S. J., & Zhong, Q. (2014). pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter, 10(35), 6820-6830.
Pan, K., Zhong, Q., & Baek, S. J. (2013). Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. Journal of Agricultural and Food Chemistry, 61(25), 6036-6043.
Perrone, D., Ardito, F., Giannatempo, G., Dioguardi, M., Troiano, G., Lo Russo, L., ... & Lo Muzio, L. (2015). Biological and therapeutic activities, and anticancer properties of curcumin. Experimental and Therapeutic Medicine, 10(5), 1615-1623.
Priftis, D., Xia, X., Margossian, K. O., Perry, S. L., Leon, L., Qin, J., ... & Tirrell, M. (2014). Ternary, tunable polyelectrolyte complex fluids driven by complex coacervation. Macromolecules, 47(9), 3076-3085.
Rafiee, Z., Nejatian, M., Daeihamed, M., & Jafari, S. M. (2019). Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends in Food Science & Technology.
Ravindran, J., Prasad, S., & Aggarwal, B. B. (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?. The AAPS Journal, 11(3), 495-510.
Santos, M. B., da Costa, N. R., & Garcia‐Rojas, E. E. (2018). Interpolymeric complexes formed between whey proteins and biopolymers: Delivery systems of bioactive ingredients. Comprehensive Reviews in Food Science and Food Safety, 17(3), 792-805.
Shahgholian, N., & Rajabzadeh, G. (2016). Fabrication and characterization of curcumin-loaded albumin/gum arabic coacervate. Food Hydrocolloids, 59, 17-25.
Taghavi Kevij, H., Mohammadian, M., & Salami, M. (2019). Complexation of curcumin with whey protein isolate for enhancing its aqueous solubility through a solvent‐free pH‐driven approach. Journal of Food Processing and Preservation, 43(12), e14227.
Tan, C., Xie, J., Zhang, X., Cai, J., & Xia, S. (2016). Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids, 57, 236-245.
Tapal, A., & Tiku, P. K. (2012). Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chemistry, 130(4), 960-965.
Tsuda, T. (2018). Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food & Function, 9(2), 705-714.
Wang, P., Guo, X., Wu, C., Huang, Q., Xu, X., Zhou, G., & Bai, Y. (2019). Hydrophobic‐assembled curcumin–porcine plasma protein complex affected by pH. International Journal of Food Science & Technology, 54(3), 891-897.
Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer, 10(1), 12.
Wright, J. S. (2002). Predicting the antioxidant activity of curcumin and curcuminoids. Journal of Molecular Structure: THEOCHEM, 591(1-3), 207-217.
Xiang, H., Sun-waterhouse, D., Cui, C., Wang, W., & Dong, K. (2018). Modification of soy protein isolate by glutaminase for nanocomplexation with curcumin. Food Chemistry, 268, 504-512.
Xie, H., Xiang, C., Li, Y., Wang, L., Zhang, Y., Song, Z., ... & Fang, W. (2019). Fabrication of ovalbumin/κ-carrageenan complex nanoparticles as a novel carrier for curcumin delivery. Food Hydrocolloids, 89, 111-121.
Yallapu, M. M., Khan, S., Maher, D. M., Ebeling, M. C., Sundram, V., Chauhan, N., ... & Jaggi, M. (2014). Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials, 35(30), 8635-8648.
Yi, J., Fan, Y., Zhang, Y., Wen, Z., Zhao, L., & Lu, Y. (2016). Glycosylated α-lactalbumin-based nanocomplex for curcumin: Physicochemical stability and DPPH-scavenging activity. Food Hydrocolloids, 61, 369-377.
Yu, H., Nguyen, M. H., Cheow, W. S., & Hadinoto, K. (2017). A new bioavailability enhancement strategy of curcumin via self-assembly nano-complexation of curcumin and bovine serum albumin. Materials Science and Engineering: C, 75, 25-33.
Yuan, S., Lei, F., Liu, Z., Tong, Q., Si, T., & Xu, R. X. (2015). Coaxial electrospray of curcumin-loaded microparticles for sustained drug release. PloS One, 10(7).