Document Type : Original research


1 Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Transfer Phenomena Laboratory (TPL), Department of Food Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran


Saffron flower waste is a new source of pectin and response surface methodology (RSM) was used to optimize the microwave-assisted acid extraction process. The optimal extraction conditions of pectin obtained from saffron flower waste were in microwave power of 700 W, irradiation time of 2.43 min, and pH of 1.5. The physicochemical and functional properties of pectin was evaluated and the results demonstrated that pectin extracted under optimal conditions was low methoxyl with emulsifying activity of 67.97%, surface activity of 36.89 mN/m and 33.24 mN/m at 0.10 and 0.50 % w/v, total phenolic content (TPC) of 2.86 mg EGA/g pectin and degree of esterification (DE) of 40.99%. In addition, the FT-IR and 1H-NMR spectra were used to identify the functional groups existing in the structure of extracted pectin.


Main Subjects

Adetunji, L. R., Adekunle, A., Orsat, V., & Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239-250.
Ahmadian-Kouchaksaraie, Z., Niazmand, R., & Najafi, M. N. (2016). Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. Innovative Food Science & Emerging Technologies, 36, 234-244.‏
AOAC (1995). Official methods of analysis, Association of official Analytical Chemists, 15th ed., Washington DC.
Azad, A. K. M., Ali, M. A., Akter, M. S., Rahman, M. J., & Ahmed, M. (2014). Isolation and characterization of pectin extracted from lemon pomace during ripening. Journal of Food and Nutrition Sciences, 2(2), 30-35.‏
Bayar, N., Bouallegue, T., Achour, M., Kriaa, M., Bougatef, A., & Kammoun, R. (2017). Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chemistry, 235, 275-282.‏
Bayar, N., Friji, M., & Kammoun, R. (2018). Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chemistry, 241, 127-134
Caroço, R. F., Kim, B., Santacoloma, P. A., Abildskov, J., Lee, J. H., & Huusom, J. K. (2019). Analysis and model-based optimization of a pectin extraction process. Journal of Food Engineering, 244, 159-169.‏
Chau, C. F., & Huang, Y. L. (2003). Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. Journal of Agricultural and Food Chemistry, 51(9), 2615-2618.‏
Chen, Y., Zhang, J. G., Sun, H. J., & Wei, Z. J. (2014). Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. International Journal of Biological Macromolecules, 70, 498–505
Do Nascimento Oliveira, A., de Almeida Paula, D., de Oliveira, E. B., Saraiva, S. H., Stringheta, P. C., & Ramos, A. M. (2018). Optimization of pectin extraction from Ubá mango peel through surface response methodology. International Journal of Biological Macromolecules, 113, 395-402.
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421.‏
Fishman, M. L., Chau, H. K., Hoagland, P., & Ayyad, K. (1999). Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. Carbohydrate Research, 323(1-4), 126-138.‏
Garavand, F., Rahaee, S., Vahedikia, N., & Jafari, S. M. (2019). Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science & Technology, 89, 26-44.
Gracia, L., Perez-Vidal, C., & Gracia-López, C. (2009). Automated cutting system to obtain the stigmas of the saffron flower. Biosystems Engineering, 104(1), 8-17.‏
Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93-100.‏
Hosseini, A., Razavi, B. M., & Hosseinzadeh, H. (2018). Saffron (Crocus sativus) petal as a new pharmacological target: a review. Iranian Journal of Basic Medical Sciences, 21(11), 1091.
Hosseini, S. S., Khodaiyan, F., & Yarmand, M. S. (2016). Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers, 140, 59-65.‏
Hosseini, S. S., Khodaiyan, F., Kazemi, M., & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules, 125, 621-629.‏
‏Jafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate Polymers, 140, 20-25.‏
JECFA, F. A. O. (2009). Compendium of food additive specifications. The Monograph, 7 In 71st meeting.
 Kakouri, E., Daferera, D., Paramithiotis, S., Astraka, K., Drosinos, E. H., & Polissiou, M. G. (2017). Crocus sativus L. tepals: The natural source of antioxidant and antimicrobial factors. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 66-74.‏‏
Karimi, E., Oskoueian, E., Hendra, R., & Jaafar, H. Z. (2010). Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules, 15(9), 6244-6256.‏
Katırcı, N., Işık, N., Güpür, Ç., Guler, H. O., Gursoy, O., & Yilmaz, Y. (2018). Differences in antioxidant activity, total phenolic and flavonoid contents of commercial and homemade tomato pastes. Journal of the Saudi Society of Agricultural Sciences, 19(4), 249-254.
Kazemi, M., Khodaiyan, F., & Hosseini, S. S. (2019). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT, 105, 182-189.‏
Khan, M., Bibi, N., & Zeb, A. (2015). Optimization of process conditions for pectin extraction from citrus peel. Science and Technology Development, 34(1), 9-15.‏
Khazaei, K. M., Jafari, S. M., Ghorbani, M., Kakhki, A. H., & Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9(7), 1993-2001.‏
Košťálová, Z., Aguedo, M., & Hromádková, Z. (2016). Microwave-assisted extraction of pectin from unutilized pumpkin biomass. Chemical Engineering and Processing: Process Intensification, 102, 9-15.
Kpodo, F. M., Agbenorhevi, J. K., Alba, K., Bingham, R. J., Oduro, I. N., Morris, G. A., & Kontogiorgos, V. (2017). Pectin isolation and characterization from six okra genotypes. Food Hydrocolloids, 72, 323-330.‏
Lu, J., Li, J., Jin, R., Li, S., Yi, J., & Huang, J. (2019). Extraction and characterization of pectin from Premna microphylla Turcz leaves. International Journal of Biological Macromolecules, 131, 323-328. ‏
Ma, S., Yu, S. J., Zheng, X. L., Wang, X. X., Bao, Q. D., & Guo, X. M. (2013). Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydrate Polymers, 98(1), 750-753.‏
Maran, J. P. (2015). Statistical optimization of aqueous extraction of pectin from waste durian rinds. International Journal of Biological Macromolecules, 73, 92-98.‏
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate Polymers, 101, 786-791.‏
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2013). Optimization of microwave assisted extraction of pectin from orange peel. Carbohydrate Polymers, 97(2), 703-709.‏
Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M., & Brnčić, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28-37. ‏
McClements, D. J. (2004). Food emulsions: Principles, practices, and techniques (2nded.). Boca Raton: CRC Press.
Melnyk, J. P., Wang, S., & Marcone, M. F. (2010). Chemical and biological properties of the world's most expensive spice: Saffron. Food Research International, 43(8), 1981-1989.
Munoz, J., Rincon, F., Alfaro, M. C., Zapata, I., de la Fuente, J., Beltrán, O., & de Pinto, G. L. (2007). Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersions. Carbohydrate Polymers, 70(2), 198-205.‏
Pappas, C. S., Malovikova, A., Hromadkova, Z., Tarantilis, P. A., Ebringerova, A., & Polissiou, M. G. (2004). Determination of the degree of esterification of pectinates with decyl and benzyl ester groups by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and curve-fitting deconvolution method. Carbohydrate Polymers, 56(4), 465-469.‏
Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2020). Barhang (Plantago major L.) seed gum: Ultrasound-assisted extraction optimization, characterization, and biological activities. ‏Journal of Food Processing and Preservation, 44(10), e14750.
Niknam, R., Mousavi, M., & Kiani, H. (2020). New studies on the galactomannan extracted from Trigonella foenum – graceum (fenugreek) seed: Effect of subsequent use of ultrasound and microwave on the physicochemical and rheological properties. Food and Bioprocess Technology, 13(5), 882 – 900.
Pasandide, B., Khodaiyan, F., Mousavi, Z. E., & Hosseini, S. S. (2017). Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydrate Polymers, 178, 27-33.‏
Petkowicz, C. L. O., Vriesmann, L. C., & Williams, P. A. (2017). Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocolloids, 65, 57-67.‏
Pitsikas, N. (2016). Constituents of saffron (Crocus sativus L.) as potential candidates for the treatment of anxiety disorders and schizophrenia. Molecules, 21(3), 303.‏
Rehman, A., Ahmad, T., Aadil, R. M., Spotti, M. J., Bakry, A. M., Khan, I. M., ... & Tong, Q. (2019). Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology, 90, 35-46. ‏
Ren, J. N., Hou, Y. Y., Fan, G., Zhang, L. L., Li, X., Yin, K., & Pan, S. Y. (2019). Extraction of orange pectin based on the interaction between sodium caseinate and pectin. Food Chemistry, 283, 265-274.‏
Sato, M. D. F., Rigoni, D. C., Canteri, M. H. G., Petkowicz, C. L. D. O., Nogueira, A., & Wosiacki, G. (2011). Chemical and instrumental characterization of pectin from dried pomace of eleven apple cultivars. Acta Scientiarum. Agronomy, 33(3), 383-389.‏
Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H. A., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154-161.‏
Sayah, M. Y., Chabir, R., Benyahia, H., Kandri, Y. R., Chahdi, F. O., Touzani, H., & Errachidi, F. (2016). Yield, esterification degree and molecular weight evaluation of pectins isolated from orange and grapefruit peels under different conditions. PloS one, 11(9), e0161751.‏
Shahi, T., Assadpour, E., & Jafari, S. M. (2016). Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends in Food Science & Technology, 58, 69-78.
Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41-49. ‏
‏Su, D. L., Li, P. J., Quek, S. Y., Huang, Z. Q., Yuan, Y. J., Li, G. Y., & Shan, Y. (2019). Efficient extraction and characterization of pectin from orange peel by a combined surfactant and microwave assisted process. Food Chemistry, 286, 1-7.‏
Swamy, G. J., & Muthukumarappan, K. (2017). Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chemistry, 220, 108-114.‏
Thirugnanasambandham, K., Sivakumar, V., & Maran, J. P. (2014). Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydrate Polymers, 112, 622-626.‏
Venkatanagaraju, E., Bharathi, N., Sindhuja, R. H., Chowdhury, R. R., & Sreelekha, Y. (2019). Extraction and Purification of Pectin from Agro-Industrial Wastes. In Pectins-Extraction, Purification, Characterization and Applications. IntechOpen.‏
Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., ... & Liu, D. (2016). Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 61, 730-739.
Yang, J. S., Mu, T. H., & Ma, M. M. (2019). Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chemistry, 289, 351-359.‏
Yapo, B. M., Robert, C., Etienne, I., Wathelet, B., & Paquot, M. (2007). Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100(4), 1356-1364.‏
Yuliarti, O., Goh, K. K., Matia-Merino, L., Mawson, J., & Brennan, C. (2015). Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis). Food Chemistry, 187, 290-296.