Arfat, Y. A., Benjakul, S., Vongkamjan, K., Sumpavapol, P., & Yarnpakdee, S. (2015). Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. Journal of food science and technology, 52, 6182-6193.
Alsaraf, S., Hadi, Z., Al-Lawati, W. M., Al Lawati, A. A., & Khan, S. A. (2020). Chemical composition, in vitro antibacterial and antioxidant potential of Omani Thyme essential oil along with in silico studies of its major constituent. Journal of King Saud University-Science, 32, 1021-1028.
Alizadeh, A. (2015). Essential oil composition, phenolic content, antioxidant, and antimicrobial activity of cultivated Satureja rechingeri Jamzad at different phenological stages. Zeitschrift für Naturforschung, 70, 51-58.
Alaraidh, I. A., Ibrahim, M. M., & El-Gaaly, G. A. (2014). Evaluation of green synthesis of Ag nanoparticles using Eruca sativa and Spinacia oleracea leaf extracts and their antimicrobial activity. Iranian Journal of Biotechnology, 12, 50-55.
Ashraf, J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A., & Choi, I. (2016). Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Scientific reports, 6, 20414.
Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollahi, M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control, 36, 1-7.
Alizadeh Amiri, S., & Alizadeh Amiri, H. (2017). The effect of edible coating enriched with plant essential oils on increasing the shelf life of fish. The first national conference on new technologies in food science and industry and tourism in Iran, Babolsar.
Brust, M., Walker. M., Bethell. D., Schiffrin. DJ., & Whyman, R. (1994). Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system. Journal of the Chemical Society, Chemical Communication, 7, 801-2.
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology, 94, 223-253.
Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., ... & Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food additives and contaminants, 25, 241-258.
Cai, Z., Lechtman, E., Mashouf, S., Chattopadhyay, N., Keller, B. M., Lai, P., & Pignol, J. P. (2013). A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness. Physics in Medicine & Biology, 58, 3075.
Cho, K. H., Park, J. E., Osaka, T., & Park, S. (2005). The study of antimicrobial activity and preservative effects of Nano silver ingredient. Electrochim Acta, 51, 956-60.
Dehghani, P., Hosseini, S. M. H., Golmakani, M. T., Majdinasab, M., & Esteghlal, S. (2018). Shelf-life extension of refrigerated rainbow trout fillets using total Farsi gum-based coatings containing clove and thyme essential oils emulsions. Food Hydrocolloids, 77, 677-688.
Damm, C., Vasylyev, S., Segets, D., Hanisch, M., Taccardi, N., Wasserscheid, P., & Peukert, W. (2006). Synthesis of silver nanoparticles in melts of amphiphilic polyesters. Nanotechnology, 24, 115604.
Devi, J. M., & Umadevi, M. (2014). Synthesis and characterization of silver–PVA nanocomposite for sensor and antibacterial applications. Journal of Cluster Science, 25, 639-650.
Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2010). Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Science & Emerging Technologies, 11, 742-748.
Eloff, J. N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta medica, 64, 711-713.
Firoozi, S., Jamzad, M., & Yari, M. (2016). Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia CA Mey and the evaluation of total phenolic and flavonoid contents and antioxidant activity. Journal of Nanostructure in Chemistry 6, 357-364.
Goma, A. A., Khedr, M. A., Mandour, M. A., Rashed, R. R., & El-kazaz, S. E. (2017). Neurobehavioural effect of zinc oxide nanoparticles and its conventional form on adult male rats and their pups. Alexandria Journal for Veterinary Sciences, 66, 33-39.
Gomaa, E. Z. (2017). Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: A green approach. Journal of Genetic Engineering and Biotechnology, 15, 49-57.
Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., & Nasri, M. (2016). Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environmental Science and Pollution Research, 23, 15310-15320.
Huang, M. H., & Yang, M. C. (2008). Evaluation of glucan/poly (vinyl alcohol) blend wound dressing using rat models. International journal of pharmaceutics, 346, 38-46.
Hornebecq, V., Antonietti, M., Cardinal, T., & Treguer-Delapierre, M., (2003). Stable silver nanoparticles immobilized in mesoporous silica. Journal of Materials Chemistry, 15, 19-27.
Hadian, J., Esmaeili, H., Nadjafi, F., & Khadivi-Khub, A. (2014). Essential oil characterization of Satureja rechingeri in Iran. Industrial crops and products, 61, 403-409.
Huang, K., Zhang, Z., Zhou, Q., Liu, L., Zhang, X., Kang, M., & Liu, J. (2015). Silver catalyzed gallium phosphide nanowires integrated on silicon and in situ Ag-alloying induced bandgap transition. Nanotechnology, 26, 255706.
Izadi, M., Jafari, N. J., & Suntar, I. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials, 10, 947-961.
Jaiswal, L., Shankar, S., Rhim, J.-W., & Hahm, D. H. (2020). Lignin-mediated green synthesis of AgNPs in carrageenan matrix for wound dressing applications. International Journal of Biological Macromolecules, 159, 859-869.
Jagadeeswaran, P., Salam, H. A., Rajiv, P., Kamaraj, M., Gunalan, S., & Sivaraj, R. (2012). Plants: green route for nanoparticle synthesis. International Research Journal of Biological Sciences, 1, 85-90.
Jamzad, Z. (2008). Satureja rechingeri (Labiatae) – a new species from Iran. Annuals of Naturhistoriches Museum Wien, 98, 75–77.
Jiang, H. Q., Manolete, S., Wong, A. C. L., & Denes. F. S. (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93, 1411-22.
Khoshbouy Lahidjani, L., Ahari, H., & Sharifan, A. (2020). Influence of curcumin‐loaded nanoemulsion fabricated through emulsion phase inversion on the shelf life of Oncorhynchus mykiss stored at 4 C. Journal of Food Processing and Preservation, 44, 14-28.
Karmous, I., Pandey, A., Haj, K. B., & Chaoui, A. (2019). Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biological trace element research, 2, 1-13.
La Storia, A., Ercolini, D., Marinello, F., Di Pasqua, R., Villani, F., & Mauriello, G. (2011). Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Research in microbiology, 162, 164-172.
Matak, K. E., Tahergorabi, R., & Jaczynski, J. (2015). A review: Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods. Food Research International, 77, 697-703.
McLeod, M. C., McHenry, R. S., Beckman, E. J., & Roberts, C. B. (2003). Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems. Journal of Physical Chemistry B, 107, 2693-700.
Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Sokeng, T., Jorel, A., Izadi, M., Jafari, N. J., & Suntar, I. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. Materials, 10, 947-961.
Majdzadeh, K., & Nazari, B. (2010). Improving the mechanical properties of thermoplastic starch/poly (vinyl alcohol)/clay nanocomposites. Composites Science and Technology, 70, 1557-1563.
Muridi Kia, F., Khosravani,SA., Ghaedi Mehrarang, Z, Muria Kia, A., Mohseni, R., & Sharifi A. (2016). Antimicrobial effect of hydroalcoholic extract of white savory and zinc nanoparticles on coagulase gene expression in clinical and standard samples of methicillin-resistant Staphylococcus aureus. Armaghane Danesh, 21, 305-313.
Nawaz, A., Xiong, Z., Li, Q., Xiong, H., Irshad, S., Chen, L., Wang, P., Zhang, M., Hina, S., & Regenstein, J. M. (2019). Evaluation of physico‐chemical, textural and sensory quality characteristics of red fish meat based fried snacks. Journal of the Science of Food and Agriculture, 99, 5771-5777.
Narchin, F., Larijani, K., Rustaiyan, A., Ebrahimi, S. N., & Tafvizi, F. (2018). Phytochemical synthesis of silver nanoparticles by two techniques Using Saturaja rechengri Jamzad extract: identifying and comparing in Vitro anti-proliferative activities. Advanced pharmaceutical bulletin, 8, 235-242.
Omidbaigi, R., Sefidkon, F., & Hejazi, M. (2005). Essential oil composition of Thymuscitriodorus L. cultivated in Iran. Flavor and Fragrance Journal, 20, 237-238.
Oyedemi, S. O., Okoh, A. I., Mabinya, L. V., Pirochenva, G., & Afolayan, A. J. (2009). The proposed mechanism of bactericidal action of eugenol, ∝-terpineol and g-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. African Journal of Biotechnology, 8, 1280-1286.
Paredes, D., Ortiz, C., & Torres, R. (2014). Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157: H7 and methicillin-resistant Staphylococcus aureus (MRSA). International journal of nanomedicine, 9, 1717.
Prasad, A., Benoy, Mathew, S., T., Rakesh, P. P., Hari, M., Libish, T. M., ... & Vallabhan, C. P. G. (2012). UV-visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. Journal of fluorescence, 22, 1563-1569.
Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry, 9, 1-9.
Ramezani, Z., Zarei, M., & Raminnejad, N. (2015). Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control, 51, 43-48.
Rai, M., Yadav, A., & Gade, A. (2008). CRC 675—current trends in phytosynthesis of metal nanoparticles. Critical reviews in biotechnology, 28, 277-284.
Rajasekharreddy, P., Rani, P. U., & Sreedhar, B. (2010). Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. Journal of Nanoparticle Research, 12, 1711-1721.
Saki, J., Khodanazary, A., & Hosseini, S. M. (2018). Effect of chitosan-gelatin composite and bi-layer coating combined with pomegranate peel extract on quality properties of belanger’s croaker. Journal of aquatic food product technology, 27, 557-567.
Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K., & Rather, I. A. (2017). Application of nanotechnology in food science: perception and overview. Frontiers in microbiology, 8, 1501.
Shahnazi, S., Khalighi-Sigaroodi, F., Ajani, Y., Yazdani, D., Taghizad-Farid, R., Ahvazi, M., & Abdoli, M. (2008). The chemical composition and antimicrobial activity of essential oil of Satureja intermedia C. A. mey. Journal of Medicinal Plants, 7, 85-92.
Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408e420.
Shahbazi, Y., & Shavisi, N. (2018). Chitosan coatings containing Mentha spicata essential oil and zinc oxide nanoparticle for shelf life extension of rainbow trout fillets. Journal of Aquatic Food Product Technology, 27, 986-997.
Sotiriou, G. A., & Pratsinis, S. E. (2010). Antibacterial activity of nanosilver ions and particles. Environmental science & technology, 44, 5649-5654.
Salem, M. Z. M., Mansour, M. M., Mohamed, W. S., Ali, H. M., & Hatamleh, A. A. (2015). Evaluation of the antifungal activity of treated Acacia saligna wood with Paraloid B-72/TiO2 nanocomposites against the growth of Alternaria tenuissima, Trichoderma harzianum, and Fusarium culmorum. BioResources, 12, 7615-7627.
Shchukin, D. G., Radtchenko, I. L., & Sukhorukov, G. B. (2003). Photoinduced reduction of silver inside microscale polyelectrolyte capsules. Journal of Physical Chemistry, 4, 1101-3.
Shipway, AN., Katz, E., & Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical and sensor applications. Journal of Physical Chemistry, 1, 18-52.
Salvia-Trujillo, L., Qian, C., Martín-Belloso, O., & McClements, D. J. (2013). Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 141, 1472-1480.
Tsai, T., Tsai, T., Chien,Y., Lee, C., & Tsai. P. (2008). In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities: A comparative study of green tea versus differentherbs. Food Chemistry, 110, 859-64
Teymouri, A., Bekaian, M., & Papli Barwati, S. (2016). Antimicrobial effect of extracts of Satureja hortensis biofilm on some important human bacterial pathogens. Iranian Journal of Medical Sciences, 23, 38-45.
Vanaja, M., & Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3, 217-223.
Ultee, A., Kets, E. P. W., Alberda, M., Hoekstra, F. A., & Smith, E. J. (2000). Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of Microbiology, 174, 233-238.
Zhang, Y. H., Chen, F., Zhuang, J. H., Tang, Y., & Wang, D. (2002). Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chemical Communications, 23, 2814-5.
Zhang, J. P., Sheng, L. Q., & Chen, P.(2003). Synthesis of various types of silver nanoparticles used as physical developing nuclei in photographic science. Journal of the Chinese Chemical Society, 14, 645-8.