Document Type : Original research


1 Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka

2 Department of Food Science & Technology, Faculty of Livestock, Fisheries & Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka


Edible flowers of Hibiscus rosa-sinensis have been identified as a source of antioxidant phenolics. Thus, effective extraction of phenolics is important to efficiently utilize these flowers. The present study aims to make use of a central composite design, to investigate the effects of extraction variables on the three response variables; total phenolic content, total anthocyanin content and antioxidant activity. Central composite design with four independent variables including solid: liquid ratio, ethanol concentration, temperature and time were used for the simultaneous optimization of response variables. The optimum process parameters generated were 24.0% ethanol, 1:40 solid: liquid ratio, 44°C temperature and 41 minutes of extraction. The experimental values obtained for the response variables under the generated optimum conditions confirmed the validity of the proposed second-order polynomial model. The results from the simultaneous optimization demonstrated the application of feasible process parameters for the extraction of phenolics from Hibiscus rosa-sinensis flowers and the effective utilization of these flowers in food as well as the pharmaceutical industry.


Main Subjects

Azahar, N. F., Abd Gani, S. S., & Mokhtar, N. F. M. (2017). Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology. Chemistry Central Journal11(1), 1-10.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta76(5), 965-977.
Boonkird, S., Phisalaphong, C., & Phisalaphong, M. (2008). Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab-and pilot-plant scale. Ultrasonics Sonochemistry15(6), 1075-1079.
Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry166, 585-595.
Dranca, F., & Oroian, M. (2016). Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrasonics Sonochemistry31, 637-646.
Gunathilake K. D. P. P., & Ranaweera, K. K. D. S. (2016). Antioxidative properties of 34 green leafy vegetables. Journal of Functional Foods, 26, 176-186.
Gunathilake, K. D. P. P., Ranaweera, K. K. D. S. & Rupasinghe, H. P. V., (2017). Optimization of phenolics and carotenoids extraction from leaves of Passiflora edulis using response surface methods. Asian Journal of Biotechnology and Bioresource Technology1(4), 1-8.
Gunathilake, K. D. P. P., Ranaweera, K. K. D. S., & Rupasinghe, H. P. V. (2019). Response surface optimization for recovery of polyphenols and carotenoids from leaves of Centella asiatica using an ethanol‐based solvent system. Food Science & Nutrition. 7(2), 528-536.
Gunathilake, K. D. P. P. (2020). Emerging technologies available for the enhancement of bioactives concentration in functional beverages. In Biotechnological progress and beverage consumption, 9-69. Academic Press.
Izadiyan, P., & Hemmateenejad, B. (2016). Multi-response optimization of factors affecting ultrasonic-assisted extraction from Iranian basil using central composite design. Food Chemistry190, 864-870.
Jagadeesan, G., Muniyandi, K., Manoharan, A. L., Thamburaj, S., Sathyanarayanan, S., & Thangaraj, P. (2019). Optimization of phenolic compounds extracting conditions from Ficus racemosa L. fruit using response surface method. Journal of Food Measurement and Characterization13(1), 312-320.
Janarny, G., Gunathilake, K. D. P. P., & Ranaweera, K. K. D. S. (2021a). Nutraceutical potential of dietary phytochemicals in edible flowers-A review. Journal of Food Biochemistry45(4), e13642.
Janarny, G., Ranaweera, K. K. D. S., & Gunathilake, K. D. P. P. (2021b). Antioxidant activities of hydro-methanolic extracts of Sri Lankan edible flowers. Biocatalysis and Agricultural Biotechnology35, 102081.
Khazaei, K. M., Jafari, S. M., Ghorbani, M., Kakhki, A. H., & Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods9(7), 1993-2001.
Kumari, G. U. W. U. P. and Gunathilake, K. D. P. P., (2020). In vitro bioaccessibility and antioxidant activity of black plum (Syzygium caryophyllatum). Journal of Food Biochemistry44(12), e13499.  
Le, X. T., Huynh, M. T., Pham, T. N., Than, V. T., Toan, T. Q., Bach, L. G., & Trung, N. Q. (2019). Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from Vietnamese Carissa carandas L. fruits. Processes7(7), 468.
Loizzo, M. R., Pugliese, A., Bonesi, M., Tenuta, M. C., Menichini, F., Xiao, J., & Tundis, R. (2016). Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties. Journal of Agricultural and Food Chemistry, 64(12), 2467–2474.
Medouni-Adrar, S., Boulekbache-Makhlouf, L., Cadot, Y., Medouni-Haroune, L., Dahmoune, F., Makhoukhe, A., & Madani, K. (2015). Optimization of the recovery of phenolic compounds from Algerian grape by-products. Industrial Crops and Products77, 123-132.
Missoum, A. (2018). An update review on Hibiscus rosa-sinensis phytochemistry and medicinal uses. Journal of Ayurvedic and Herbal Medicine4(3), 135-146.
Ongkowijoyo, P., Luna-Vital, D. A., & de Mejia, E. G. (2018). Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chemistry250, 113-126.
Öztürk, H., Kolak, U., & Meric, C. (2011). Antioxidant, anticholinesterase and antibacterial activities of Jurinea consanguinea DC. Records of Natural Products, 5(1), 43-51.
Salib, J. Y., Daniel, E. N., Hifnawy, M. S., Azzam, S. M., Shaheed, I. B., & Abdel-Latif, S. M. (2011). Polyphenolic compounds from flowers of Hibiscus rosa-sinensis Linn. and their inhibitory effect on alkaline phosphatase enzyme activity in vitro. Zeitschrift für Naturforschung C66(9-10), 453-459.
Shen, H., Zheng, Y., Chen, R., Huang, X., & Shi, G. (2021). Neuroprotective effects of quercetin 3-O-sophoroside from Hibiscus rosa-sinensis Linn. on scopolamine-induced amnesia in mice. Journal of Functional Foods76, 104291.
Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of FC reagent. Methods in Enzymology, 29, 152–178.
Vázquez-Espinosa, M., V González-de-Peredo, A., Espada-Bellido, E., Ferreiro-González, M., Toledo-Domínguez, J. J., Carrera, C., & F Barbero, G. (2019). Ultrasound-assisted extraction of two types of antioxidant compounds (TPC and TA) from black chokeberry (Aronia melanocarpa L.): Optimization of the individual and simultaneous extraction methods. Agronomy9(8), 456.
Vijayakumar, S., Yabesh, J. M., Arulmozhi, P., & Praseetha, P. K. (2018). Identification and isolation of antimicrobial compounds from the flower extract of Hibiscus rosa-sinensis L: In silico and in vitro approaches. Microbial pathogenesis123, 527-535.
Yang, Y. C., Li, J., Zu, Y. G., Fu, Y. J., Luo, M., Wu, N., & Liu, X. L. (2010). Optimization of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity. Food Chemistry122(1), 373-380.