Azahar, N. F., Abd Gani, S. S., & Mokhtar, N. F. M. (2017). Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology. Chemistry Central Journal, 11(1), 1-10.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.
Boonkird, S., Phisalaphong, C., & Phisalaphong, M. (2008). Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab-and pilot-plant scale. Ultrasonics Sonochemistry, 15(6), 1075-1079.
Dahmoune, F., Nayak, B., Moussi, K., Remini, H., & Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chemistry, 166, 585-595.
Dranca, F., & Oroian, M. (2016). Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrasonics Sonochemistry, 31, 637-646.
Gunathilake K. D. P. P., & Ranaweera, K. K. D. S. (2016). Antioxidative properties of 34 green leafy vegetables. Journal of Functional Foods, 26, 176-186.
Gunathilake, K. D. P. P., Ranaweera, K. K. D. S. & Rupasinghe, H. P. V., (2017). Optimization of phenolics and carotenoids extraction from leaves of Passiflora edulis using response surface methods. Asian Journal of Biotechnology and Bioresource Technology, 1(4), 1-8.
Gunathilake, K. D. P. P., Ranaweera, K. K. D. S., & Rupasinghe, H. P. V. (2019). Response surface optimization for recovery of polyphenols and carotenoids from leaves of Centella asiatica using an ethanol‐based solvent system. Food Science & Nutrition. 7(2), 528-536.
Gunathilake, K. D. P. P. (2020). Emerging technologies available for the enhancement of bioactives concentration in functional beverages. In Biotechnological progress and beverage consumption, 9-69. Academic Press.
Izadiyan, P., & Hemmateenejad, B. (2016). Multi-response optimization of factors affecting ultrasonic-assisted extraction from Iranian basil using central composite design. Food Chemistry, 190, 864-870.
Jagadeesan, G., Muniyandi, K., Manoharan, A. L., Thamburaj, S., Sathyanarayanan, S., & Thangaraj, P. (2019). Optimization of phenolic compounds extracting conditions from Ficus racemosa L. fruit using response surface method. Journal of Food Measurement and Characterization, 13(1), 312-320.
Janarny, G., Gunathilake, K. D. P. P., & Ranaweera, K. K. D. S. (2021a). Nutraceutical potential of dietary phytochemicals in edible flowers-A review. Journal of Food Biochemistry, 45(4), e13642.
Janarny, G., Ranaweera, K. K. D. S., & Gunathilake, K. D. P. P. (2021b). Antioxidant activities of hydro-methanolic extracts of Sri Lankan edible flowers. Biocatalysis and Agricultural Biotechnology, 35, 102081.
Khazaei, K. M., Jafari, S. M., Ghorbani, M., Kakhki, A. H., & Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9(7), 1993-2001.
Kumari, G. U. W. U. P. and Gunathilake, K. D. P. P., (2020). In vitro bioaccessibility and antioxidant activity of black plum (Syzygium caryophyllatum). Journal of Food Biochemistry, 44(12), e13499.
Le, X. T., Huynh, M. T., Pham, T. N., Than, V. T., Toan, T. Q., Bach, L. G., & Trung, N. Q. (2019). Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from Vietnamese Carissa carandas L. fruits. Processes, 7(7), 468.
Loizzo, M. R., Pugliese, A., Bonesi, M., Tenuta, M. C., Menichini, F., Xiao, J., & Tundis, R. (2016). Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties. Journal of Agricultural and Food Chemistry, 64(12), 2467–2474.
Medouni-Adrar, S., Boulekbache-Makhlouf, L., Cadot, Y., Medouni-Haroune, L., Dahmoune, F., Makhoukhe, A., & Madani, K. (2015). Optimization of the recovery of phenolic compounds from Algerian grape by-products. Industrial Crops and Products, 77, 123-132.
Missoum, A. (2018). An update review on Hibiscus rosa-sinensis phytochemistry and medicinal uses. Journal of Ayurvedic and Herbal Medicine, 4(3), 135-146.
Ongkowijoyo, P., Luna-Vital, D. A., & de Mejia, E. G. (2018). Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chemistry, 250, 113-126.
Öztürk, H., Kolak, U., & Meric, C. (2011). Antioxidant, anticholinesterase and antibacterial activities of Jurinea consanguinea DC. Records of Natural Products, 5(1), 43-51.
Salib, J. Y., Daniel, E. N., Hifnawy, M. S., Azzam, S. M., Shaheed, I. B., & Abdel-Latif, S. M. (2011). Polyphenolic compounds from flowers of Hibiscus rosa-sinensis Linn. and their inhibitory effect on alkaline phosphatase enzyme activity in vitro. Zeitschrift für Naturforschung C, 66(9-10), 453-459.
Shen, H., Zheng, Y., Chen, R., Huang, X., & Shi, G. (2021). Neuroprotective effects of quercetin 3-O-sophoroside from Hibiscus rosa-sinensis Linn. on scopolamine-induced amnesia in mice. Journal of Functional Foods, 76, 104291.
Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of FC reagent. Methods in Enzymology, 29, 152–178.
Vázquez-Espinosa, M., V González-de-Peredo, A., Espada-Bellido, E., Ferreiro-González, M., Toledo-Domínguez, J. J., Carrera, C., & F Barbero, G. (2019). Ultrasound-assisted extraction of two types of antioxidant compounds (TPC and TA) from black chokeberry (Aronia melanocarpa L.): Optimization of the individual and simultaneous extraction methods. Agronomy, 9(8), 456.
Vijayakumar, S., Yabesh, J. M., Arulmozhi, P., & Praseetha, P. K. (2018). Identification and isolation of antimicrobial compounds from the flower extract of Hibiscus rosa-sinensis L: In silico and in vitro approaches. Microbial pathogenesis, 123, 527-535.
Yang, Y. C., Li, J., Zu, Y. G., Fu, Y. J., Luo, M., Wu, N., & Liu, X. L. (2010). Optimization of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity. Food Chemistry, 122(1), 373-380.