The future of plant food security lies in food biotechnology

Document Type : Review article

Authors

1 Food Science & Technology Department, Agriculture Faculty, University of Zanjan, Zanjan Province, Iran

2 Agronomy & Plant Breeding Department, Agriculture Faculty, University of Zanjan, Zanjan Province, Iran

3 Modern Biological Research Centre, University of Zanjan, Zanjan Province, Iran

4 Department of field and vegetable crops, University of Pristina, Pristina, Serbia

Abstract

The restriction on the development of agricultural fields due to the population growth and the conversion of arable land to residential one has caused the failure in the production of macular crops. Also, the increase in greenhouse gases especially resulting from livestock on farms and also urban life and the resulting climate change; have posed major environmental challenges to almost all human activities over the years. Currently, modern biotechnology can be used for sustainable development in agricultural productivity and related industries to solve human problems in diseases, poverty, pollution, and the current food crisis. Because the traditional systems can no longer meet the world's food needs. Therefore, there is an urgent need to use modern biotechnology to accelerate the development of executive programs.

Keywords

Main Subjects

Abbasishavazi, M., Hajimohammadi, B., & Hajebrahimi, Z. (2019). Predictors of intention to consume genetically modified oil among personnel of community health care centers in Yazd, Iran: An application of the theory of planned behavior. Journal of Community Health Research, 8(4), 211–219.
Ali, L., Nawaz, A., Iqbal, S., Aamir Basheer, M., Hameed, J., Albasher, G., Shah, S. A. R., & Bai, Y. (2021). Dynamics of transit oriented development, role of greenhouse gases and urban environment: a study for management and policy. Sustainability, 13(5), 2536.
Andow, D. A., & Zwahlen, C. (2006). Assessing environmental risks of transgenic plants. Ecology Letters, 9(2), 196–214.
Anjanappa, R. B., & Gruissem, W. (2021). Current progress and challenges in crop genetic transformation. Journal of Plant Physiology, 261, 153411.
Ayan, A., Meriç, S., Gümüş, T., & Atak, Ç. (2022). Next generation of transgenic plants: From farming to pharming. Genetically Modified Plants and Beyond, 49.
Badghan, F., & Namdar, R. (2021). Analysis of factors affecting consumption of transgenic products and food integrity comprehensiveness among Shiraz University students. Iranian Journal of Agricultural Economics and Development Research, 52(2), 405–421.
Baghbani-Arani, A., Poureisa, M., Alekajbaf, H., Borz-Abad, R. K., & Khodadadi-Dashtaki, K. (2021). Investigating the status of transgenic crops in Iran in terms of cultivation, consumption, laws and rights in comparison with the world. Scientific Reports, 11(1), 1–10.
Barati, B., Zeng, K., Baeyens, J., Wang, S., Addy, M., Gan, S.-Y., & Abomohra, A. E.-F. (2021). Recent progress in genetically modified microalgae for enhanced carbon dioxide sequestration. Biomass and Bioenergy, 145, 105927.
Carsono, N., PRAYOGA, G. I., SARI, S., & RACHMADI, M. (2022). Agronomic characteristics and genetic relationship of putative transgenic rice lines of cv. Fatmawati with the Glu-1Dx5 transgene. Biodiversitas Journal of Biological Diversity, 23(1), 291-298.
Desamero, N. V, Chico, M. V, Fernando, I. C., Mariano, M. V, Pastor, H. M., Cabusora, C. C., Corpuz, N. C., Domingo, R. D., Cortez, F. C., & Lazaro, R. O. (2007). Genetic enhancement of in vitro-culture derived tungro resistance rice breeding lines. Philippine Journal of Crop Science (Philippines).
Encyclopedia Britannica (2022). Bacillus thuringiensis. https://www.britannica.com/science/Bacillus-thuringiensis. (accesed 27/Sep/2022).
Enitan-Folami, A. M., & Swalaha, F. M. (2020). 10 Application of biotechnology in the food industry. Food Science and Technology: Trends and Future Prospects, 235.
Fischer, K., Herrman, T. J., Hoffmann, V., & Lee, K.-M. (2019). Variance structure of aflatoxin contaminated maize in incoming trucks at commercial mills in Kenya. Journal of Regulatory Science, 7, 1–5.
Francino, O., Altet, L., Sánchez-Robert, E., Rodriguez, A., Solano-Gallego, L., Alberola, J., Ferrer, L., Sánchez, A., & Roura, X. (2006). Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Veterinary Parasitology, 137(3–4), 214–221.
Ghosh, T., & Adhikari, D. (2022). Transgenic Plants: A Curtain Raiser Implying Risks vis-a-vis Benefits on Present Environment and Society. International Journal of Advanced Research in Biological Sciences, 9(1), 71–95.
Haga, S. B. (2022). I Will Have the Genetically Modified Foods, Please. In The Book of Genes and Genomes (pp. 141–157). Springer.
Hamdan, M. F., Mohd Noor, S. N., Abd-Aziz, N., Pua, T.-L., & Tan, B. C. (2022). Green revolution to gene revolution: Technological advances in agriculture to feed the world. Plants, 11(10), 1297.
Hao, H., Li, Z., Leng, C., Lu, C., Luo, H., Liu, Y., Wu, X., Liu, Z., Shang, L., & Jing, H.-C. (2021). Sorghum breeding in the genomic era: opportunities and challenges. Theoretical and Applied Genetics, 134(7), 1899–1924.
Hüdig, M., Laibach, N., & Hein, A.-C. (2022). Genome editing in crop plant research-Alignment of expectations and current developments. Plants, 11(2), 212.
Hundleby, P. A. C., & Harwood, W. A. (2019). Impacts of the EU GMO regulatory framework for plant genome editing. Food and Energy Security, 8(2), e00161.
ISAAA. (2020). ISAAA Brief 55-2019: Executive Summary. Available Online at: https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp (accessed January 20, 2021).
Karel, A. (2018). Phytochemical profile of chia incorporation in snacks. Magnesium, 197, 350.
Kemsawasd, V., Inthachat, W., Suttisansanee, U., & Temviriyanukul, P. (2022). Road to the red carpet of edible crickets through integration into the human food chain with biofunctions and sustainability: A review. International Journal of Molecular Sciences, 23(3), 1801.
Kowalczyk, T., Merecz-Sadowska, A., Picot, L., Brčić Karačonji, I., Wieczfinska, J., Śliwiński, T., & Sitarek, P. (2022). Genetic manipulation and bioreactor culture of plants as a tool for industry and its applications. Molecules, 27(3), 795.
Long, Y., Wei, X., Wu, S., Wu, N., Li, Q. X., Tan, B., & Wan, X. (2022). Plant molecular farming, a tool for functional food production. Journal of Agricultural and Food Chemistry, 70(7), 2108–2116.
Lonkila, A., & Kaljonen, M. (2022). Ontological struggle over new product category: Transition potential of meat alternatives. Environmental Innovation and Societal Transitions, 42, 1–11.
Maestre, M., & Poole, N. (2018). Value chains for nutrition in South Asia: Who delivers nutritious foods, how and to whom? IDS Bulletin, 49(1), 1–20.
Maestre, M., Poole, N., & Henson, S. (2017). Assessing food value chain pathways, linkages and impacts for better nutrition of vulnerable groups. Food Policy, 68, 31–39.
Maitra, D., & Srivastava, A. (2022). Tumour markers, prognostic and predictive factors in breast cancer. In Breast Cancer (pp. 221–241). Springer.
Miedaner, T., & Juroszek, P. (2021). Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theoretical and Applied Genetics, 134(6), 1771–1785.
Mostafa, A. A., Abu-Hassiba, A. E.-H. G., ElRouby, M. T., Abou-Hashim, F., & Omar, H. S. (2022). Food adulteration with genetically modified soybeans and maize, meat of animal species and ractopamine residues in different food products. Electronic Journal of Biotechnology, 55, 65–77.
Munaweera, T. I. K., Jayawardana, N. U., Rajaratnam, R., & Dissanayake, N. (2022). Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture & Food Security, 11(1), 1–28.
Obaid, H., Shrestha, R. K., Liu, D., Elsayed, N. S., Ni, J., & Ni, C. (2022). Biofortification of Maize with Zinc and Its Effect on Human Health. Journal of Soil Science and Plant Nutrition, 1–13.
Ogwu, M. C. (2021). Lifelong consumption of plant-based GM foods: is it safe? In Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security (pp. 1168–1186). IGI Global.
Ortega, M. A., Alvarez-Mon, M. A., García-Montero, C., Fraile-Martinez, O., Guijarro, L. G., Lahera, G., Monserrat, J., Valls, P., Mora, F., & Rodríguez-Jiménez, R. (2022). Gut microbiota metabolites in major depressive disorder-deep insights into their pathophysiological role and potential translational applications. Metabolites, 12(1), 50.
Paarlberg, R. (2022). The trans-Atlantic conflict over “green” farming. Food Policy, 108, 102229.
Pal, A. (2022). Protocols in Advanced Genomics and allied techniques. (pp. 571-603). Springer. New York, USA.
Phillips, E. (2019). Genetic engineering applications to improve cellulase production and efficiency: Part I. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 209–225). Elsevier.
Pinheiro, D. H., & Valicente, F. H. (2021). Identification of Bacillus thuringiensis strains for the management of lepidopteran pests. Neotropical Entomology, 50(5), 804–811.
Poole, N., Bentley, A. R., Donovan, J. A., Erenstein, O., Ibba, M. I., & Palacios-Rojas, N. (2021). Food security, nutrition and health: implications for maize and wheat research and development. CGIAR research programs on wheat and maize agri-food systems (CRP WHEAT and CRP MAIZE). International Maize and Wheat Improvement Center (CIMMYT). Texcoco, Mexico
Pratheesh, P. T., Lal, S., Tuvikene, R., Manickam, S., & Sudheer, S. (2020). The contribution of microbial biotechnology to sustainable development in agriculture and allied sectors. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 17–28). Elsevier.
Pretari, A., Hoffmann, V., & Tian, L. (2019). Post-harvest practices for aflatoxin control: Evidence from Kenya. Journal of Stored Products Research, 82, 31–39.
Rahman, S. U., McCoy, E., Raza, G., Ali, Z., Mansoor, S., & Amin, I. (2022). Improvement of soybean; A way forward transition from genetic engineering to new plant breeding technologies. Molecular Biotechnology, 1–19.
Ranjha, M. M. A. N., Shafique, B., Khalid, W., Nadeem, H. R., Mueen-ud-Din, G., & Khalid, M. Z. (2022). Applications of Biotechnology in Food and Agriculture: a Mini-Review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 1–5.
Seid, A., & Andualem, B. (2021). The role of green biotechnology through genetic engineering for climate change mitigation and adaptation, and for food security: current challenges and future perspectives. Journal of Advances in Biology & Biotechnology, 1, 11.
Shen, C., Yin, X.-C., Jiao, B.-Y., Li, J., Jia, P., Zhang, X.-W., Cheng, X.-H., Ren, J.-X., Lan, H.-D., & Hou, W.-B. (2022). Evaluation of adverse effects/events of genetically modified food consumption: a systematic review of animal and human studies. Environmental Sciences Europe, 34(1), 1–33.
Singh, R. B., Mishra, S., Saxena, P., Saxena, M., Smail, M. M. A., & Velluri, S. R. (2022). Genetically modified organisms and foods: perspectives and challenges. Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 493–505.
Sowa, M., Yu, J., Palacios-Rojas, N., Goltz, S. R., Howe, J. A., Davis, C. R., Rocheford, T., & Tanumihardjo, S. A. (2017). Retention of carotenoids in biofortified maize flour and β-cryptoxanthin-enhanced eggs after household cooking. ACS Omega, 2(10), 7320–7328.
Széles, E., Nagy, K., Ábrahám, Á., Kovács, S., Podmaniczki, A., Nagy, V., Kovács, L., Galajda, P., & Tóth, S. Z. (2022). Microfluidic platforms designed for morphological and photosynthetic investigations of Chlamydomonas reinhardtii on a Single-Cell Level. Cells, 11(2), 285.
Tadich, T., & Escobar-Aguirre, S. (2022). Citizens’ attitudes and perceptions towards genetically modified food in Chile: Special emphasis in CRISPR technology. Austral Journal of Veterinary Sciences, 54(1), 1–8.
Tailor, S., Jain, K., Marwal, A., Meena, M., Anbarasu, K., & Gaur, R. K. (2022). Outlooks of nanotechnology in organic farming management. Defence Life Science Journal7(1), 52-60.
Tokel, D., Genc, B. N., & Ozyigit, I. I. (2021). Economic impacts of Bt (Bacillus thuringiensis) cotton. Journal of Natural Fibers, 1–18.
Turnbull, C., Lillemo, M., & Hvoslef-Eide, T. A. K. (2021). Global regulation of genetically modified crops amid the gene edited crop boom–a review. Frontiers in Plant Science, 12, 630396.
Wambugu, P. W., Ndjiondjop, M.-N., & Henry, R. (2021). Genetics and genomics of African rice (Oryza glaberrima Steud) domestication. Rice, 14(1), 1–14.
Wilson, A. K. (2021). Will gene-edited and other GM crops fail sustainable food systems? In Rethinking Food and Agriculture (pp. 247–284). Elsevier.
Yakovleva, I. V, & Kamionskaya, A. M. (2022). State of the art: Russia starts genome-edited plant assessment. Trends in Biotechnology, 40(6), 635–638.
Yali, W. (2022). Application of Genetically Modified Organism (GMO) crop technology and its implications in modern agriculture. Journal of Agricultural Science & Technology, 8(1), 14–20.
Zhang, C., Wohlhueter, R., & Zhang, H. (2016). Genetically modified foods: A critical review of their promise and problems. Food Science and Human Wellness, 5(3), 116–123.