Sustainable and cost-effective production of glutamic acid by Corynebacterium glutamicum PTCC 1532 from waste bread using enzymatic hydrolysis and microbial fermentation

Document Type : Original research

Authors

Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran

Abstract

Food waste generation has increased in recent years due to population growth. The continuous rise in food production for human consumption has resulted in 1.3 billion tons of food waste annually worldwide. Waste bread, an inexpensive substrate with high carbohydrate content, can hydrolyze by proper methods, such as enzymatic hydrolysis, for utilization in fermentation. Glutamic acid, a non-essential amino acid with various applications in pharmaceuticals, food industries, and cosmetics, can be produced by fermentation. In this study, we applied waste bread, as a cost-effective starchy waste, to produce fermentable substances through enzymatic hydrolysis. This process resulted in a significant increase in reducing sugar concentration from 1.285 ± 0.195 g/L to 123.282 ± 0.924 g/L. The obtained hydrolysate was utilized as a carbonic source for the glutamic acid synthesis by Corynebacterium glutamicum PTCC 1532. To enhance the glutamic acid yield, response surface methodology was employed to optimize the independent variables. The optimum levels of reducing sugar concentration of hydrolysate, urea concentration, biotin concentration, and inoculum size was 49.889 g/L, 6.812 g/L, 6.57 μg/L, and 5.339% (v/v), respectively. Under these optimized conditions, the experimental glutamic acid production was 21.34 ± 0.204 g/L, which demonstrated a reasonable correlation between the predicted and experimental results. This study illustrated that waste bread can serve as a low-cost carbon source for producing valuable compounds such as glutamic acid.

Keywords

Main Subjects

Abdenacer, M., Kahina, B. I., Aïcha, N., Nabil, N., Jean-Louis, G., & Joseph,
B. (2012). Sequential optimization approach for enhanced
production of glutamic acid from Corynebacterium glutamicum
2262 using date juice. Biotechnology and Bioprocess
Engineering, 17(4), 795–803. https://doi.org/10.1007/s12257-
011-0486-8
AČANSKI, M., PASTOR, K., RAZMOVSKI, R., VUČUROVIĆ, V., &
PSODOROV, Đ. (2014). Bioethanol production from waste bread
samples made from mixtures of wheat and buckwheat flours.
Journal on Processing and Energy in Agriculture, 18(1), 40–43.
http://scindeks-clanci.ceon.rs/data/pdf/1821-4487/2014/1821-
44871401040A.pdf
Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., Innasimuthu,
G. M., Rajoo, B., Alanzi, K. F., & Rajaram, S. K. (2019).
Optimization of glutamic acid production by Corynebacterium
glutamicum using response surface methodology. Journal of King
Saud University - Science, 32(2), 1403–1408.
https://doi.org/10.1016/j.jksus.2019.11.034
AOAC. (2019). Official Methods of Analysis of the Association of Official
Analytical Chemists: Official Methods of Analysis of AOAC
International (21st Editi).
Bashir, S., Bashir, R., Pervaiz, M., Adnan, A., Al-Qahtani, W. H., &
Sillanpaa, M. (2022). RSM-Based Optimization of Fermentation
Conditions and Kinetic Studies of Glutamic Acid and Lysine
Production by Corynebacterium glutamicum. Journal of
Nanomaterials, 2022. https://doi.org/10.1155/2022/3713456
Benabda, O., Kasmi, M., Kachouri, F., & Hamdi, M. (2018). Valorization of
the powdered bread waste hydrolysate as growth medium for
baker yeast. Food and Bioproducts Processing, 109, 1–8.
https://doi.org/10.1016/j.fbp.2018.02.007
Benabda, O., M’Hir, S., Kasmi, M., Mnif, W., & Hamdi, M. (2019).
Optimization of Protease and Amylase Production by Rhizopus
oryzae Cultivated on Bread Waste Using Solid-State
Fermentation. Journal of Chemistry, 2019.
https://doi.org/10.1155/2019/3738181
Breig, S. J. M., & Luti, K. J. K. (2021). Response surface methodology: A
review on its applications and challenges in microbial cultures.
Materials Today: Proceedings, 42, 2277–2284.
https://doi.org/10.1016/j.matpr.2020.12.316
D’Este, M., Alvarado-Morales, M., & Angelidaki, I. (2018). Amino acids
production focusing on fermentation technologies – A review.
Biotechnology Advances, 36(1), 14–25.
https://doi.org/10.1016/j.biotechadv.2017.09.001
Das, K., Anis, M., Azemi, B. M. N. M., & Lsmail, N. (1995). Fermentation
and Recovery of Glutamic Acid from Palm Waste Hydrolysate by
Ion-Exchange Resin Column. Biotechnology and Bioengineering,
48(5), 551–555.
https://doi.org/https://doi.org/10.1002/bit.260480519
Demirci, A. S., Palabiyik, I., Apaydın, D., Mirik, M., & Gumus, T. (2019).
Xanthan gum biosynthesis using Xanthomonas isolates from
waste bread: Process optimization and fermentation kinetics. Lwt,
101(October 2018), 40–47.
https://doi.org/10.1016/j.lwt.2018.11.018
Ebrahimi, F., Khanahmadi, M., Roodpeyma, S., & Taherzadeh, M. J. (2008).
Ethanol production from bread residues. Biomass and Bioenergy,
32(4), 333–337. https://doi.org/10.1016/j.biombioe.2007.10.007
Fahimitabar, A., Mohammad, S., Razavian, H., & Rezaei, S. A. (2021).
Application of RSM for optimization of glutamic acid production
by Corynebacterium glutamicum in bath culture. Heliyon, 7.
https://doi.org/10.1016/j.heliyon.2021.e07359
Gadkari, S., Kumar, D., Qin, Z. hao, Ki Lin, C. S., & Kumar, V. (2021). Life
cycle analysis of fermentative production of succinic acid from
bread waste. Waste Management, 126, 861–871.
https://doi.org/10.1016/j.wasman.2021.04.013
Ganguly, S. (2023). The pivotal role of Corynebacterium glutamicum in LGlutamic
acid fermentation: A concise review. Biocatalysis and
Agricultural Biotechnology, 47(July 2022).
https://doi.org/10.1016/j.bcab.2022.102578
Ghazanfari, N., Fallah, S., Vasiee, A., & Tabatabaei Yazdi, F. (2023).
Optimization of fermentation culture medium containing food
waste for L-glutamate production using native lactic acid bacteria
and comparison with industrial strain. LWT, 184, 114871.
https://doi.org/10.1016/j.lwt.2023.114871
Han, W., Hu, Y., Li, S., Huang, J., Nie, Q., Zhao, H., & Tang, J. (2017).
Simultaneous dark fermentative hydrogen and ethanol production
from waste bread in a mixed packed tank reactor. Journal of
Cleaner Production, 141, 608–611.
https://doi.org/10.1016/j.jclepro.2016.09.143
Han, W., Lam, W. C., Melikoglu, M., Wong, M. T., Leung, H. T., Ng, C. L.,
Yan, P., Yeung, S. Y., & Lin, C. S. K. (2015). Kinetic Analysis of
a Crude Enzyme Extract Produced via Solid State Fermentation
of Bakery Waste. ACS Sustainable Chemistry and Engineering,
3(9), 2043–2048.
https://doi.org/10.1021/acssuschemeng.5b00323
Han, X., Li, L., & Bao, J. (2019). Microbial extraction of biotin from
lignocellulose biomass and its application on glutamic acid
production. Bioresource Technology, 288(April).
https://doi.org/10.1016/j.biortech.2019.121523
Haque, M. A., Kachrimanidou, V., Koutinas, A., & Lin, C. S. K. (2016).
Valorization of bakery waste for biocolorant and enzyme
production by Monascus purpureus. Journal of Biotechnology,
231, 55–64. https://doi.org/10.1016/j.jbiotec.2016.05.003
Haroon, S., Vinthan, A., Negron, L., Das, S., & Berenjian, A. (2016).
Biotechnological approaches for production of high value
compounds from bread waste. American Journal of Biochemistry
and Biotechnology, 12(2), 102–109.
https://doi.org/10.3844/ajbbsp.2016.102.109
Hirasawa, T., & Wachi, M. (2017). Glutamate fermentation-2: Mechanism of
L-Glutamate overproduction in corynebacterium glutamicum. In
Advances in Biochemical Engineering/Biotechnology (Vol. 159,
pp. 57–72). Springer, Tokyo. https://doi.org/10.1007/10_2016_26
Hudečková, H., Šupinová, P., & Babák, L. (2017). Optimization of enzymatic
hydrolysis of waste bread before fermentation. Acta Universitatis
Agriculturae et Silviculturae Mendelianae Brunensis, 65(1), 35–
40. https://doi.org/10.11118/actaun201765010035
Jin, C., Huang, Z., & Bao, J. (2020). High-Titer Glutamic Acid Production
from Lignocellulose Using an Engineered Corynebacterium
glutamicum with Simultaneous Co-utilization of Xylose and
Glucose. ACS Sustainable Chemistry & Engineering, 8(16),
6315–6322. https://doi.org/10.1021/acssuschemeng.9b07839
Jyothi, A. N., Sasikiran, K., Nambisan, B., & Balagopalan, C. (2005).
Optimisation of glutamic acid production from cassava starch
factory residues using Brevibacterium divaricatum. Process
Biochemistry, 40(11), 3576–3579.
https://doi.org/10.1016/j.procbio.2005.03.046
Khan, N. S., Mishra, I. M., Singh, R. P., & Prasad, B. (2005). Modeling the
growth of Corynebacterium glutamicum under product inhibition
in L-glutamic acid fermentation. Biochemical Engineering
Journal, 25(2), 173–178.
https://doi.org/10.1016/j.bej.2005.01.025
Jafari Shad et al. JFBE 7(1): 9-18,2024
18
Kumar, R. S., Moorthy, I. M. G., & Baskar, R. (2013). Modeling and
optimization of glutamic acid production using mixed culture of
corynebacterium glutamicum NCIM2168 and pseudomonas
reptilivora NCIM2598. Preparative Biochemistry and
Biotechnology, 43(7), 668–681.
https://doi.org/10.1080/10826068.2013.772064
Kumar, R., Vikramachakravarthi, D., & Pal, P. (2014). Production and
purification of glutamic acid: A critical review towards process
intensification. Chemical Engineering and Processing: Process
Intensification, 81, 59–71.
https://doi.org/10.1016/j.cep.2014.04.012
Kumar, V., Brancoli, P., Narisetty, V., Wallace, S., Charalampopoulos, D.,
Kumar Dubey, B., Kumar, G., Bhatnagar, A., Kant Bhatia, S., &
J.Taherzadeh, M. (2023). Bread waste – A potential feedstock for
sustainable circular biorefineries. Bioresource Technology,
369(December 2022), 128449.
https://doi.org/10.1016/j.biortech.2022.128449
Madhavan Nampoothiri, K., & Pandey, A. (1996). Solid state fermentation
for L-glutamic acid production using Brevibacterium sp.
Biotechnology Letters, 18(2), 199–204.
https://doi.org/10.1007/BF00128679
Melikoglu, M., & Webb, C. (2013). Use of waste bread to produce
fermentation products. In Food Industry Wastes (First Edit, pp.
63–76). Elsevier BV. https://doi.org/10.1016/B978-0-12-391921-
2.00004-4
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination
of Reducing Sugar. Analytical Chemistry, 31(3), 426–428.
https://doi.org/10.1021/ac60147a030
Ng, H. S., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J.
(2020). Recent advances on the sustainable approaches for
conversion and reutilization of food wastes to valuable
bioproducts. Bioresource Technology, 302(135), 122889.
https://doi.org/10.1016/j.biortech.2020.122889
Pietrzak, W., & Kawa-Rygielska, J. (2014). Ethanol fermentation of waste
bread using granular starch hydrolyzing enzyme: Effect of raw
material pretreatment. Fuel, 134, 250–256.
https://doi.org/10.1016/j.fuel.2014.05.081
Reddy, M. K., Vaddadi, U., Vijayalakshmi, P., & Manasa, R. V. (2020).
Dioscorea bulbifera l. - a novel source for the production of
Glutamic acid using statistical optimization method. International
Journal of Pharmaceutical Research, 12(3), 86–98.
https://doi.org/10.31838/ijpr/2020.12.03.012
Sadaf, A., Kumar, S., Nain, L., & Khare, S. K. (2021). Bread waste to lactic
acid: Applicability of simultaneous saccharification and solid
state fermentation. Biocatalysis and Agricultural Biotechnology,
32(October 2020). https://doi.org/10.1016/j.bcab.2021.101934
Schultz, C., Niebisch, A., Gebel, L., & Bott, M. (2007). Glutamate production
by Corynebacterium glutamicum: Dependence on the
oxoglutarate dehydrogenase inhibitor protein OdhI and protein
kinase PknG. Applied Microbiology and Biotechnology, 76(3),
691–700. https://doi.org/10.1007/s00253-007-0933-9
Schulz, A. A., Collett, H. J., & Reid, S. J. (2001). Nitrogen and carbon
regulation of glutamine synthetase and glutamate synthase in
Corynebacterium glutamicum ATCC 13032. FEMS Microbiology
Letters, 205(2), 361–367. https://doi.org/10.1016/S0378-
1097(01)00501-8
Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S.,
Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen
waste to value-added products. Journal of Environmental
Management, 241, 619–630.
https://doi.org/10.1016/j.jenvman.2019.02.053
Spies, J. R. (1957). Colorimetric procedures for amino acids. Methods in
Enzymology, 3(C), 467–477. https://doi.org/10.1016/S0076-
6879(57)03417-5
Sükrü Demirci, A., Palabıyık, I., Gümüs, T., & Özalp, Ş. (2017). Waste Bread
as a Biomass Source: Optimization of Enzymatic Hydrolysis and
Relation between Rheological Behavior and Glucose Yield.
Waste and Biomass Valorization, 8(3), 775–782.
https://doi.org/10.1007/s12649-016-9601-6
Sunitha, I., Subba Rao, M. V., & Ayyanna, C. (1998). Optimization of
medium constituents and fermentation conditions for the
production of L-glutamic acid by the coimmobilized whole cells
of Micrococcus glutamicus and Pseudomonas reptilivora.
Bioprocess Engineering, 18(5), 353–359.
https://doi.org/10.1007/s004490050455
Tavakkoli, M., Hamidi-Esfahani, Z., & Azizi, M. H. (2012). Optimization of
Corynebacterium glutamicum Glutamic Acid Production by
Response Surface Methodology. Food and Bioprocess
Technology, 5(1), 92–99. https://doi.org/10.1007/s11947-009-
0242-7
Torabi, S., Satari, B., & Hassan-Beygi, S. R. (2021). Process optimization for
dilute acid and enzymatic hydrolysis of waste wheat bread and its
effect on aflatoxin fate and ethanol production. Biomass
Conversion and Biorefinery, 11(6), 2617–2625.
https://doi.org/10.1007/s13399-020-00676-3
Tryfona, T., & Bustard, M. T. (2004). Mechanistic understanding of the
fermentative L-glutamic acid overproduction by
Corynebacterium glutamicum through combined metabolic flux
profiling and transmembrane transport characteristics. Journal of
Chemical Technology and Biotechnology, 79(12), 1321–1330.
https://doi.org/10.1002/jctb.1133
Uçkun Kiran, E., Trzcinski, A. P., Ng, W. J., & Liu, Y. (2014). Bioconversion
of food waste to energy: A review. Fuel, 134, 389–399.
https://doi.org/10.1016/j.fuel.2014.05.074
Uhde, A., Youn, J. W., Maeda, T., Clermont, L., Matano, C., Krämer, R.,
Wendisch, V. F., Seibold, G. M., & Marin, K. (2013).
Glucosamine as carbon source for amino acid-producing
Corynebacterium glutamicum. Applied Microbiology and
Biotechnology, 97(4), 1679–1687.
https://doi.org/10.1007/s00253-012-4313-8
Wen, J., Xiao, Y., Liu, T., Gao, Q., & Bao, J. (2018). Rich biotin content in
lignocellulose biomass plays the key role in determining
cellulosic glutamic acid accumulation by Corynebacterium
glutamicum. Biotechnology for Biofuels, 11(1), 1–12.
https://doi.org/10.1186/s13068-018-1132-x
Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., &
Pokomeda, K. (2014). Application of response surface
methodology and artificial neural network methods in modelling
and optimization of biosorption process. Bioresource Technology,
160, 150–160. https://doi.org/10.1016/j.biortech.2014.01.021
Yang, P., Chen, Y., & Gong, A. dong. (2021). Development of a defined
medium for Corynebacterium glutamicum using urea as nitrogen
source. 3 Biotech, 11(9), 1–10. https://doi.org/10.1007/s13205-
021-02959-6
Zhang, A. Y. Z., Sun, Z., Leung, C. C. J., Han, W., Lau, K. Y., Li, M., & Lin,
C. S. K. (2013). Valorisation of bakery waste for succinic acid
production. Green Chemistry, 15(3), 690–695.
https://doi.org/10.1039/c2gc36518a