Abdenacer, M., Kahina, B. I., Aïcha, N., Nabil, N., Jean-Louis, G., & Joseph,
B. (2012). Sequential optimization approach for enhanced
production of glutamic acid from Corynebacterium glutamicum
2262 using date juice. Biotechnology and Bioprocess
Engineering, 17(4), 795–803. https://doi.org/10.1007/s12257-
011-0486-8
AČANSKI, M., PASTOR, K., RAZMOVSKI, R., VUČUROVIĆ, V., &
PSODOROV, Đ. (2014). Bioethanol production from waste bread
samples made from mixtures of wheat and buckwheat flours.
Journal on Processing and Energy in Agriculture, 18(1), 40–43.
http://scindeks-clanci.ceon.rs/data/pdf/1821-4487/2014/1821-
44871401040A.pdf
Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almanaa, T. N., Innasimuthu,
G. M., Rajoo, B., Alanzi, K. F., & Rajaram, S. K. (2019).
Optimization of glutamic acid production by Corynebacterium
glutamicum using response surface methodology. Journal of King
Saud University - Science, 32(2), 1403–1408.
https://doi.org/10.1016/j.jksus.2019.11.034
AOAC. (2019). Official Methods of Analysis of the Association of Official
Analytical Chemists: Official Methods of Analysis of AOAC
International (21st Editi).
Bashir, S., Bashir, R., Pervaiz, M., Adnan, A., Al-Qahtani, W. H., &
Sillanpaa, M. (2022). RSM-Based Optimization of Fermentation
Conditions and Kinetic Studies of Glutamic Acid and Lysine
Production by Corynebacterium glutamicum. Journal of
Nanomaterials, 2022. https://doi.org/10.1155/2022/3713456
Benabda, O., Kasmi, M., Kachouri, F., & Hamdi, M. (2018). Valorization of
the powdered bread waste hydrolysate as growth medium for
baker yeast. Food and Bioproducts Processing, 109, 1–8.
https://doi.org/10.1016/j.fbp.2018.02.007
Benabda, O., M’Hir, S., Kasmi, M., Mnif, W., & Hamdi, M. (2019).
Optimization of Protease and Amylase Production by Rhizopus
oryzae Cultivated on Bread Waste Using Solid-State
Fermentation. Journal of Chemistry, 2019.
https://doi.org/10.1155/2019/3738181
Breig, S. J. M., & Luti, K. J. K. (2021). Response surface methodology: A
review on its applications and challenges in microbial cultures.
Materials Today: Proceedings, 42, 2277–2284.
https://doi.org/10.1016/j.matpr.2020.12.316
D’Este, M., Alvarado-Morales, M., & Angelidaki, I. (2018). Amino acids
production focusing on fermentation technologies – A review.
Biotechnology Advances, 36(1), 14–25.
https://doi.org/10.1016/j.biotechadv.2017.09.001
Das, K., Anis, M., Azemi, B. M. N. M., & Lsmail, N. (1995). Fermentation
and Recovery of Glutamic Acid from Palm Waste Hydrolysate by
Ion-Exchange Resin Column. Biotechnology and Bioengineering,
48(5), 551–555.
https://doi.org/https://doi.org/10.1002/bit.260480519
Demirci, A. S., Palabiyik, I., Apaydın, D., Mirik, M., & Gumus, T. (2019).
Xanthan gum biosynthesis using Xanthomonas isolates from
waste bread: Process optimization and fermentation kinetics. Lwt,
101(October 2018), 40–47.
https://doi.org/10.1016/j.lwt.2018.11.018
Ebrahimi, F., Khanahmadi, M., Roodpeyma, S., & Taherzadeh, M. J. (2008).
Ethanol production from bread residues. Biomass and Bioenergy,
32(4), 333–337. https://doi.org/10.1016/j.biombioe.2007.10.007
Fahimitabar, A., Mohammad, S., Razavian, H., & Rezaei, S. A. (2021).
Application of RSM for optimization of glutamic acid production
by Corynebacterium glutamicum in bath culture. Heliyon, 7.
https://doi.org/10.1016/j.heliyon.2021.e07359
Gadkari, S., Kumar, D., Qin, Z. hao, Ki Lin, C. S., & Kumar, V. (2021). Life
cycle analysis of fermentative production of succinic acid from
bread waste. Waste Management, 126, 861–871.
https://doi.org/10.1016/j.wasman.2021.04.013
Ganguly, S. (2023). The pivotal role of Corynebacterium glutamicum in LGlutamic
acid fermentation: A concise review. Biocatalysis and
Agricultural Biotechnology, 47(July 2022).
https://doi.org/10.1016/j.bcab.2022.102578
Ghazanfari, N., Fallah, S., Vasiee, A., & Tabatabaei Yazdi, F. (2023).
Optimization of fermentation culture medium containing food
waste for L-glutamate production using native lactic acid bacteria
and comparison with industrial strain. LWT, 184, 114871.
https://doi.org/10.1016/j.lwt.2023.114871
Han, W., Hu, Y., Li, S., Huang, J., Nie, Q., Zhao, H., & Tang, J. (2017).
Simultaneous dark fermentative hydrogen and ethanol production
from waste bread in a mixed packed tank reactor. Journal of
Cleaner Production, 141, 608–611.
https://doi.org/10.1016/j.jclepro.2016.09.143
Han, W., Lam, W. C., Melikoglu, M., Wong, M. T., Leung, H. T., Ng, C. L.,
Yan, P., Yeung, S. Y., & Lin, C. S. K. (2015). Kinetic Analysis of
a Crude Enzyme Extract Produced via Solid State Fermentation
of Bakery Waste. ACS Sustainable Chemistry and Engineering,
3(9), 2043–2048.
https://doi.org/10.1021/acssuschemeng.5b00323
Han, X., Li, L., & Bao, J. (2019). Microbial extraction of biotin from
lignocellulose biomass and its application on glutamic acid
production. Bioresource Technology, 288(April).
https://doi.org/10.1016/j.biortech.2019.121523
Haque, M. A., Kachrimanidou, V., Koutinas, A., & Lin, C. S. K. (2016).
Valorization of bakery waste for biocolorant and enzyme
production by Monascus purpureus. Journal of Biotechnology,
231, 55–64. https://doi.org/10.1016/j.jbiotec.2016.05.003
Haroon, S., Vinthan, A., Negron, L., Das, S., & Berenjian, A. (2016).
Biotechnological approaches for production of high value
compounds from bread waste. American Journal of Biochemistry
and Biotechnology, 12(2), 102–109.
https://doi.org/10.3844/ajbbsp.2016.102.109
Hirasawa, T., & Wachi, M. (2017). Glutamate fermentation-2: Mechanism of
L-Glutamate overproduction in corynebacterium glutamicum. In
Advances in Biochemical Engineering/Biotechnology (Vol. 159,
pp. 57–72). Springer, Tokyo. https://doi.org/10.1007/10_2016_26
Hudečková, H., Šupinová, P., & Babák, L. (2017). Optimization of enzymatic
hydrolysis of waste bread before fermentation. Acta Universitatis
Agriculturae et Silviculturae Mendelianae Brunensis, 65(1), 35–
40. https://doi.org/10.11118/actaun201765010035
Jin, C., Huang, Z., & Bao, J. (2020). High-Titer Glutamic Acid Production
from Lignocellulose Using an Engineered Corynebacterium
glutamicum with Simultaneous Co-utilization of Xylose and
Glucose. ACS Sustainable Chemistry & Engineering, 8(16),
6315–6322. https://doi.org/10.1021/acssuschemeng.9b07839
Jyothi, A. N., Sasikiran, K., Nambisan, B., & Balagopalan, C. (2005).
Optimisation of glutamic acid production from cassava starch
factory residues using Brevibacterium divaricatum. Process
Biochemistry, 40(11), 3576–3579.
https://doi.org/10.1016/j.procbio.2005.03.046
Khan, N. S., Mishra, I. M., Singh, R. P., & Prasad, B. (2005). Modeling the
growth of Corynebacterium glutamicum under product inhibition
in L-glutamic acid fermentation. Biochemical Engineering
Journal, 25(2), 173–178.
https://doi.org/10.1016/j.bej.2005.01.025
Jafari Shad et al. JFBE 7(1): 9-18,2024
18
Kumar, R. S., Moorthy, I. M. G., & Baskar, R. (2013). Modeling and
optimization of glutamic acid production using mixed culture of
corynebacterium glutamicum NCIM2168 and pseudomonas
reptilivora NCIM2598. Preparative Biochemistry and
Biotechnology, 43(7), 668–681.
https://doi.org/10.1080/10826068.2013.772064
Kumar, R., Vikramachakravarthi, D., & Pal, P. (2014). Production and
purification of glutamic acid: A critical review towards process
intensification. Chemical Engineering and Processing: Process
Intensification, 81, 59–71.
https://doi.org/10.1016/j.cep.2014.04.012
Kumar, V., Brancoli, P., Narisetty, V., Wallace, S., Charalampopoulos, D.,
Kumar Dubey, B., Kumar, G., Bhatnagar, A., Kant Bhatia, S., &
J.Taherzadeh, M. (2023). Bread waste – A potential feedstock for
sustainable circular biorefineries. Bioresource Technology,
369(December 2022), 128449.
https://doi.org/10.1016/j.biortech.2022.128449
Madhavan Nampoothiri, K., & Pandey, A. (1996). Solid state fermentation
for L-glutamic acid production using Brevibacterium sp.
Biotechnology Letters, 18(2), 199–204.
https://doi.org/10.1007/BF00128679
Melikoglu, M., & Webb, C. (2013). Use of waste bread to produce
fermentation products. In Food Industry Wastes (First Edit, pp.
63–76). Elsevier BV. https://doi.org/10.1016/B978-0-12-391921-
2.00004-4
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination
of Reducing Sugar. Analytical Chemistry, 31(3), 426–428.
https://doi.org/10.1021/ac60147a030
Ng, H. S., Kee, P. E., Yim, H. S., Chen, P. T., Wei, Y. H., & Chi-Wei Lan, J.
(2020). Recent advances on the sustainable approaches for
conversion and reutilization of food wastes to valuable
bioproducts. Bioresource Technology, 302(135), 122889.
https://doi.org/10.1016/j.biortech.2020.122889
Pietrzak, W., & Kawa-Rygielska, J. (2014). Ethanol fermentation of waste
bread using granular starch hydrolyzing enzyme: Effect of raw
material pretreatment. Fuel, 134, 250–256.
https://doi.org/10.1016/j.fuel.2014.05.081
Reddy, M. K., Vaddadi, U., Vijayalakshmi, P., & Manasa, R. V. (2020).
Dioscorea bulbifera l. - a novel source for the production of
Glutamic acid using statistical optimization method. International
Journal of Pharmaceutical Research, 12(3), 86–98.
https://doi.org/10.31838/ijpr/2020.12.03.012
Sadaf, A., Kumar, S., Nain, L., & Khare, S. K. (2021). Bread waste to lactic
acid: Applicability of simultaneous saccharification and solid
state fermentation. Biocatalysis and Agricultural Biotechnology,
32(October 2020). https://doi.org/10.1016/j.bcab.2021.101934
Schultz, C., Niebisch, A., Gebel, L., & Bott, M. (2007). Glutamate production
by Corynebacterium glutamicum: Dependence on the
oxoglutarate dehydrogenase inhibitor protein OdhI and protein
kinase PknG. Applied Microbiology and Biotechnology, 76(3),
691–700. https://doi.org/10.1007/s00253-007-0933-9
Schulz, A. A., Collett, H. J., & Reid, S. J. (2001). Nitrogen and carbon
regulation of glutamine synthetase and glutamate synthase in
Corynebacterium glutamicum ATCC 13032. FEMS Microbiology
Letters, 205(2), 361–367. https://doi.org/10.1016/S0378-
1097(01)00501-8
Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S.,
Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen
waste to value-added products. Journal of Environmental
Management, 241, 619–630.
https://doi.org/10.1016/j.jenvman.2019.02.053
Spies, J. R. (1957). Colorimetric procedures for amino acids. Methods in
Enzymology, 3(C), 467–477. https://doi.org/10.1016/S0076-
6879(57)03417-5
Sükrü Demirci, A., Palabıyık, I., Gümüs, T., & Özalp, Ş. (2017). Waste Bread
as a Biomass Source: Optimization of Enzymatic Hydrolysis and
Relation between Rheological Behavior and Glucose Yield.
Waste and Biomass Valorization, 8(3), 775–782.
https://doi.org/10.1007/s12649-016-9601-6
Sunitha, I., Subba Rao, M. V., & Ayyanna, C. (1998). Optimization of
medium constituents and fermentation conditions for the
production of L-glutamic acid by the coimmobilized whole cells
of Micrococcus glutamicus and Pseudomonas reptilivora.
Bioprocess Engineering, 18(5), 353–359.
https://doi.org/10.1007/s004490050455
Tavakkoli, M., Hamidi-Esfahani, Z., & Azizi, M. H. (2012). Optimization of
Corynebacterium glutamicum Glutamic Acid Production by
Response Surface Methodology. Food and Bioprocess
Technology, 5(1), 92–99. https://doi.org/10.1007/s11947-009-
0242-7
Torabi, S., Satari, B., & Hassan-Beygi, S. R. (2021). Process optimization for
dilute acid and enzymatic hydrolysis of waste wheat bread and its
effect on aflatoxin fate and ethanol production. Biomass
Conversion and Biorefinery, 11(6), 2617–2625.
https://doi.org/10.1007/s13399-020-00676-3
Tryfona, T., & Bustard, M. T. (2004). Mechanistic understanding of the
fermentative L-glutamic acid overproduction by
Corynebacterium glutamicum through combined metabolic flux
profiling and transmembrane transport characteristics. Journal of
Chemical Technology and Biotechnology, 79(12), 1321–1330.
https://doi.org/10.1002/jctb.1133
Uçkun Kiran, E., Trzcinski, A. P., Ng, W. J., & Liu, Y. (2014). Bioconversion
of food waste to energy: A review. Fuel, 134, 389–399.
https://doi.org/10.1016/j.fuel.2014.05.074
Uhde, A., Youn, J. W., Maeda, T., Clermont, L., Matano, C., Krämer, R.,
Wendisch, V. F., Seibold, G. M., & Marin, K. (2013).
Glucosamine as carbon source for amino acid-producing
Corynebacterium glutamicum. Applied Microbiology and
Biotechnology, 97(4), 1679–1687.
https://doi.org/10.1007/s00253-012-4313-8
Wen, J., Xiao, Y., Liu, T., Gao, Q., & Bao, J. (2018). Rich biotin content in
lignocellulose biomass plays the key role in determining
cellulosic glutamic acid accumulation by Corynebacterium
glutamicum. Biotechnology for Biofuels, 11(1), 1–12.
https://doi.org/10.1186/s13068-018-1132-x
Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., &
Pokomeda, K. (2014). Application of response surface
methodology and artificial neural network methods in modelling
and optimization of biosorption process. Bioresource Technology,
160, 150–160. https://doi.org/10.1016/j.biortech.2014.01.021
Yang, P., Chen, Y., & Gong, A. dong. (2021). Development of a defined
medium for Corynebacterium glutamicum using urea as nitrogen
source. 3 Biotech, 11(9), 1–10. https://doi.org/10.1007/s13205-
021-02959-6
Zhang, A. Y. Z., Sun, Z., Leung, C. C. J., Han, W., Lau, K. Y., Li, M., & Lin,
C. S. K. (2013). Valorisation of bakery waste for succinic acid
production. Green Chemistry, 15(3), 690–695.
https://doi.org/10.1039/c2gc36518a