Superparamagnetic 3-mercaptopropionic acid capped FePt nanoparticles as delivery carriers of curcumin and their preferential cytotoxic effect on MDA-MB-231 breast cancer cells

Document Type : Original research

Authors

School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Abstract

In this study, functionalized superparamagnetic FePt nanoparticles (NPs) as carriers for targeted delivery of curcumin (CUR) to tumors were developed. FePt NPs were synthesized via the co-reduction of metal salts in the presence of 3-mercaptopropionic acid (MPA) to form water-dispersible carboxyl-terminated superparamagnetic NPs. CUR molecules were then conjugated to the particles through the activation of the carboxyl functional groups by 1,1′-carbonyldiimidazole (CDI) and the formation of ester bonds. XRD, FTIR, TEM, DLS, EDS and VSM were performed to evaluate the structure and properties of the particles. As-synthesized CUR-conjugated FePt NPs (CUR-FePt) were spherical core-shell structured particles with an average size of 17 nm, and the particles showed superparamagnetic properties even after the CUR conjugation. The in-vitro release results indicated relatively high CUR conjugation stability, and only 22% of CUR molecules were released after a 16 h period. MTT cytotoxicity evaluations showed that the conjugation of CUR to the surface of the particles did not alert the anticancer activity of CUR against MDA-MB-231 breast cancer cell lines. Moreover, no cytotoxic activity was observed against HEK293 normal cells. The results qualify the as-synthesized functionalized FePt NPs as potent candidates for magnetically guided drug delivery for cancer treatment.

Keywords

Main Subjects


Anderson, S. D., Gwenin, V. V., & Gwenin, C. D. (2019). Magnetic
Functionalized Nanoparticles for Biomedical, Drug Delivery and
Imaging Applications. Nanoscale Research Letters, 14(1), 188.
https://doi.org/10.1186/s11671-019-3019-6
Attia, M. F., Anton, N., Wallyn, J., Omran, Z., & Vandamme, T. F. (2019).
An overview of active and passive targeting strategies to improve
the nanocarriers efficiency to tumour sites. Journal of Pharmacy
and Pharmacology, 71(8), 1185–1198.
https://doi.org/10.1111/jphp.13098
Avasthi, A., Caro, C., Pozo-Torres, E., Leal, M. P., & García-Martín, M. L.
(2020). Magnetic Nanoparticles as MRI Contrast Agents. Topics
in Current Chemistry, 378(3), 40. https://doi.org/10.1007/s41061-
020-00302-w
Dey, S., & Sreenivasan, K. (2015). Conjugating curcumin to water soluble
polymer stabilized gold nanoparticles via pH responsive succinate
linker. Journal of Materials Chemistry B, 3(5), 824–833.
https://doi.org/10.1039/C4TB01731E
Ekladious, I., Colson, Y. L., & Grinstaff, M. W. (2019). Polymer–drug
conjugate therapeutics: advances, insights and prospects. Nature
Reviews Drug Discovery, 18(4), 273–294.
https://doi.org/10.1038/s41573-018-0005-0
Fuchigami, T., Kitamoto, Y., & Namiki, Y. (2012). Size-tunable drugdelivery capsules composed of a magnetic nanoshell. Biomatter,
2(4), 313–320. https://doi.org/10.4161/biom.22617
Gao, Y., Zhang, X., Yin, Z., Qu, S., You, J., & Chen, N. (2010). Magnetic
Properties of FePt Nanoparticles Prepared by a Micellar Method.
Nanoscale Research Letters, 5(1), 1.
https://doi.org/10.1007/s11671-009-9433-4
Ghaffari, S. B., & Moghaddam, J. (2012). Precipitation of various shapes of
nanosized zinc oxide from zinc chloride solutions by
neutralization with MgO and Ca(OH)2 as non-transparent basic
agents. Journal of the Iranian Chemical Society, 9(5), 687–692.
https://doi.org/10.1007/s13738-012-0095-2
Ghaffari, S.-B., Sarrafzadeh, M.-H., Fakhroueian, Z., & Khorramizadeh, M.
R. (2019). Flower-like curcumin-loaded folic acid-conjugated
ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer
activity and cellular uptake of curcumin in breast cancer cells.
Materials Science and Engineering: C, 103, 109827.
https://doi.org/10.1016/j.msec.2019.109827
Ghaffari, S.-B., Sarrafzadeh, M.-H., Fakhroueian, Z., Shahriari, S., &
Khorramizadeh, M. R. (2017). Functionalization of ZnO
nanoparticles by 3-mercaptopropionic acid for aqueous curcumin
Ghaffari and Sarrafzadeh JFBE 6(2): 1-7,2023
7
delivery: Synthesis, characterization, and anticancer assessment.
Materials Science and Engineering: C, 79, 465–472.
https://doi.org/10.1016/j.msec.2017.05.065
Ghaffari, S.-B., Sarrafzadeh, M.-H., Salami, M., & Alvandi, A. (2024). A
comparative study of the action mechanisms and development
strategies of different ZnO-based nanostructures in antibacterial
and anticancer applications. Journal of Drug Delivery Science
and Technology, 91, 105221.
https://doi.org/https://doi.org/10.1016/j.jddst.2023.105221
Ghaffari, S.-B., Sarrafzadeh, M.-H., Salami, M., & Khorramizadeh, M. R.
(2020). A pH-sensitive delivery system based on N-succinyl
chitosan-ZnO nanoparticles for improving antibacterial and
anticancer activities of curcumin. International Journal of
Biological Macromolecules, 151, 428–440.
https://doi.org/10.1016/j.ijbiomac.2020.02.141
Ghazanfari, M. R., Kashefi, M., Shams, S. F., & Jaafari, M. R. (2016).
Perspective of Fe 3 O 4 Nanoparticles Role in Biomedical
Applications. Biochemistry Research International, 2016, 1–32.
https://doi.org/10.1155/2016/7840161
Gibot, P., Tronc, E., Chanéac, C., Jolivet, J. P., Fiorani, D., & Testa, A. M.
(2005). (Co,Fe)Pt nanoparticles by aqueous route; selfassembling, thermal and magnetic properties. Journal of
Magnetism and Magnetic Materials, 290–291, 555–558.
https://doi.org/10.1016/j.jmmm.2004.11.526
Ha, Y., Ko, S., Kim, I., Huang, Y., Mohanty, K., Huh, C., & Maynard, J. A.
(2018). Recent Advances Incorporating Superparamagnetic
Nanoparticles into Immunoassays. ACS Applied Nano Materials,
1(2), 512–521. https://doi.org/10.1021/acsanm.7b00025
Hooshmand, S., Hayat, S. M. G., Ghorbani, A., Khatami, M., Pakravanan,
K., & Darroudi, M. (2021). Preparation and Applications of
Superparamagnetic Iron Oxide Nanoparticles in Novel Drug
Delivery Systems: An Overview. Current Medicinal Chemistry,
28(4), 777–799.
https://doi.org/10.2174/0929867327666200123152006
Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G.,
Gutierrez, M. G., & Fischer, P. (2020). Biocompatible Magnetic
Micro‐ and Nanodevices: Fabrication of FePt Nanopropellers and
Cell Transfection. Advanced Materials, 32(25).
https://doi.org/10.1002/adma.202001114
Lai, S.-M., Tsai, T.-Y., Hsu, C.-Y., Tsai, J.-L., Liao, M.-Y., & Lai, P.-S.
(2012). Bifunctional Silica-Coated Superparamagnetic FePt
Nanoparticles for Fluorescence/MR Dual Imaging. Journal of
Nanomaterials, 2012, 1–7. https://doi.org/10.1155/2012/631584
Liu, Y., Yang, K., Cheng, L., Zhu, J., Ma, X., Xu, H., Li, Y., Guo, L., Gu, H.,
& Liu, Z. (2013). PEGylated FePt@Fe2O3 core-shell magnetic
nanoparticles: Potential theranostic applications and in vivo
toxicity studies. Nanomedicine: Nanotechnology, Biology and
Medicine, 9(7), 1077–1088.
https://doi.org/10.1016/j.nano.2013.02.010
Mehdipour Biregani, Z., & Gharachorloo, M. (2020). Curcumin as a
bioactive compound: biological properties and encapsulation
methods. Journal of Food and Bioprocess Engineering, 3(1), 79–
86. https://doi.org/10.22059/jfabe.2020.76608
Meiguni, M. S. M., Salami, M., Rezaei, K., Aliyari, M. A., Ghaffari, S.-B.,
Emam-Djomeh, Z., Kennedy, J. F., & Ghasemi, A. (2023).
Fabrication and characterization of a succinyl mung bean protein
and arabic gum complex coacervate for curcumin encapsulation.
International Journal of Biological Macromolecules, 224, 170–
180. https://doi.org/10.1016/j.ijbiomac.2022.10.113
Mirmohammad Meiguni, M. S., Salami, M., Rezaei, K., Ghaffari, S., Aliyari,
M. A., Emam‐Djomeh, Z., Barazandegan, Y., & Gruen, I. (2022).
Curcumin‐loaded complex coacervate made of mung bean protein
isolate and succinylated chitosan as a novel medium for curcumin
encapsulation. Journal of Food Science, 87(11), 4930–4944.
https://doi.org/10.1111/1750-3841.16341
Mohammadian, M., Dabbagh Moghaddam, A., Almasi, L., Bohlooli, S., &
Sharifan, A. (2021). The enrichment of emergency food rations
with complexes made of curcumin/quercetin-whey protein
nanofibrils to improve their antioxidant activity. Journal of Food
and Bioprocess Engineering, 4(1), 63–68.
https://doi.org/10.22059/jfabe.2021.316882.1079
Nissinen, T., Näkki, S., Latikka, M., Heinonen, M., Liimatainen, T., Xu, W.,
Ras, R. H. A., Gröhn, O., Riikonen, J., & Lehto, V.-P. (2014).
Facile synthesis of biocompatible superparamagnetic mesoporous
nanoparticles for imageable drug delivery. Microporous and
Mesoporous Materials, 195, 2–8.
https://doi.org/10.1016/j.micromeso.2014.04.014
Pham, X. N., Nguyen, T. P., Pham, T. N., Tran, T. T. N., & Tran, T. V. T.
(2016). Synthesis and characterization of chitosan-coated
magnetite nanoparticles and their application in curcumin drug
delivery. Advances in Natural Sciences: Nanoscience and
Nanotechnology, 7(4), 045010. https://doi.org/10.1088/2043-
6262/7/4/045010
Salamani, A., Merrouche, A., Telli, L., Gómez-Romero, P., & Huertas, Z. C.
(2018). Synthesis and Caracterization of Mesoporous FePO4 as
Positive Electrode Materials for Lithium Batteries. Surface
Engineering and Applied Electrochemistry, 54(1), 55–63.
https://doi.org/10.3103/S106837551801012X
Shi, Y., Lin, M., Jiang, X., & Liang, S. (2015). Recent Advances in FePt
Nanoparticles for Biomedicine. Journal of Nanomaterials, 2015,
1–13. https://doi.org/10.1155/2015/467873
Soomro, R. A., Nafady, A., Sirajuddin, Sherazi, S. T. H., Kalwar, N. H.,
Shah, M. R., & Hallam, K. R. (2015). Catalytic Reductive
Degradation of Methyl Orange Using Air Resilient Copper
Nanostructures. Journal of Nanomaterials, 2015, 1–12.
https://doi.org/10.1155/2015/136164
Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR
imaging and drug delivery. Advanced Drug Delivery Reviews,
60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
Sun, S. (2006). Recent Advances in Chemical Synthesis, Self-Assembly, and
Applications of FePt Nanoparticles. Advanced Materials, 18(4),
393–403. https://doi.org/10.1002/adma.200501464
Teow, S.-Y., Liew, K., Ali, S. A., Khoo, A. S.-B., & Peh, S.-C. (2016).
Antibacterial Action of Curcumin against Staphylococcus
aureus : A Brief Review. Journal of Tropical Medicine, 2016, 1–
10. https://doi.org/10.1155/2016/2853045
Vo, N. T., Ngo, H. D., Do Thi, N. P., Nguyen Thi, K. P., Duong, A. P., &
Lam, V. (2016). Stability Investigation of Ligand-Exchanged
CdSe/ZnS-Y (Y = 3-Mercaptopropionic Acid or
Mercaptosuccinic Acid) through Zeta Potential Measurements.
Journal of Nanomaterials, 2016, 1–8.
https://doi.org/10.1155/2016/8564648
Wang, H. L., Huang, Y., Zhang, Y., Hadjipanayis, G. C., Weller, D., &
Simopoulos, A. (2007). Effects of annealing on the magnetic and
structural properties of FePt nanoparticles prepared by chemical
synthesis. Journal of Magnetism and Magnetic Materials, 310(1),
22–27. https://doi.org/10.1016/j.jmmm.2006.07.024
Wei, D.-H., Lin, T.-K., Liang, Y.-C., & Chang, H.-W. (2021). Formation and
Application of Core–Shell of FePt-Au Magnetic–Plasmonic
Nanoparticles. Frontiers in Chemistry, 9.
https://doi.org/10.3389/fchem.2021.653718
Wiemer, K., Dörmbach, K., Slabu, I., Agrawal, G., Schrader, F., Caumanns,
T., Bourone, S. D. M., Mayer, J., Steitz, J., Simon, U., & Pich, A.
(2017). Hydrophobic superparamagnetic FePt nanoparticles in
hydrophilic poly(N-vinylcaprolactam) microgels: a new
multifunctional hybrid system. Journal of Materials Chemistry B,
5(6), 1284–1292. https://doi.org/10.1039/C6TB02342H
Wu, Q., Liang, S., Zhou, Q., Wang, M., Zhu, Y., & Yang, X. (2015). Watersoluble l-cysteine-coated FePt nanoparticles as dual MRI/CT
imaging contrast agent for glioma. International Journal of
Nanomedicine, 2325. https://doi.org/10.2147/IJN.S75174