Anderson, S. D., Gwenin, V. V., & Gwenin, C. D. (2019). Magnetic
Functionalized Nanoparticles for Biomedical, Drug Delivery and
Imaging Applications. Nanoscale Research Letters, 14(1), 188.
https://doi.org/10.1186/s11671-019-3019-6
Attia, M. F., Anton, N., Wallyn, J., Omran, Z., & Vandamme, T. F. (2019).
An overview of active and passive targeting strategies to improve
the nanocarriers efficiency to tumour sites. Journal of Pharmacy
and Pharmacology, 71(8), 1185–1198.
https://doi.org/10.1111/jphp.13098
Avasthi, A., Caro, C., Pozo-Torres, E., Leal, M. P., & García-Martín, M. L.
(2020). Magnetic Nanoparticles as MRI Contrast Agents. Topics
in Current Chemistry, 378(3), 40. https://doi.org/10.1007/s41061-
020-00302-w
Dey, S., & Sreenivasan, K. (2015). Conjugating curcumin to water soluble
polymer stabilized gold nanoparticles via pH responsive succinate
linker. Journal of Materials Chemistry B, 3(5), 824–833.
https://doi.org/10.1039/C4TB01731E
Ekladious, I., Colson, Y. L., & Grinstaff, M. W. (2019). Polymer–drug
conjugate therapeutics: advances, insights and prospects. Nature
Reviews Drug Discovery, 18(4), 273–294.
https://doi.org/10.1038/s41573-018-0005-0
Fuchigami, T., Kitamoto, Y., & Namiki, Y. (2012). Size-tunable drugdelivery capsules composed of a magnetic nanoshell. Biomatter,
2(4), 313–320. https://doi.org/10.4161/biom.22617
Gao, Y., Zhang, X., Yin, Z., Qu, S., You, J., & Chen, N. (2010). Magnetic
Properties of FePt Nanoparticles Prepared by a Micellar Method.
Nanoscale Research Letters, 5(1), 1.
https://doi.org/10.1007/s11671-009-9433-4
Ghaffari, S. B., & Moghaddam, J. (2012). Precipitation of various shapes of
nanosized zinc oxide from zinc chloride solutions by
neutralization with MgO and Ca(OH)2 as non-transparent basic
agents. Journal of the Iranian Chemical Society, 9(5), 687–692.
https://doi.org/10.1007/s13738-012-0095-2
Ghaffari, S.-B., Sarrafzadeh, M.-H., Fakhroueian, Z., & Khorramizadeh, M.
R. (2019). Flower-like curcumin-loaded folic acid-conjugated
ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer
activity and cellular uptake of curcumin in breast cancer cells.
Materials Science and Engineering: C, 103, 109827.
https://doi.org/10.1016/j.msec.2019.109827
Ghaffari, S.-B., Sarrafzadeh, M.-H., Fakhroueian, Z., Shahriari, S., &
Khorramizadeh, M. R. (2017). Functionalization of ZnO
nanoparticles by 3-mercaptopropionic acid for aqueous curcumin
Ghaffari and Sarrafzadeh JFBE 6(2): 1-7,2023
7
delivery: Synthesis, characterization, and anticancer assessment.
Materials Science and Engineering: C, 79, 465–472.
https://doi.org/10.1016/j.msec.2017.05.065
Ghaffari, S.-B., Sarrafzadeh, M.-H., Salami, M., & Alvandi, A. (2024). A
comparative study of the action mechanisms and development
strategies of different ZnO-based nanostructures in antibacterial
and anticancer applications. Journal of Drug Delivery Science
and Technology, 91, 105221.
https://doi.org/https://doi.org/10.1016/j.jddst.2023.105221
Ghaffari, S.-B., Sarrafzadeh, M.-H., Salami, M., & Khorramizadeh, M. R.
(2020). A pH-sensitive delivery system based on N-succinyl
chitosan-ZnO nanoparticles for improving antibacterial and
anticancer activities of curcumin. International Journal of
Biological Macromolecules, 151, 428–440.
https://doi.org/10.1016/j.ijbiomac.2020.02.141
Ghazanfari, M. R., Kashefi, M., Shams, S. F., & Jaafari, M. R. (2016).
Perspective of Fe 3 O 4 Nanoparticles Role in Biomedical
Applications. Biochemistry Research International, 2016, 1–32.
https://doi.org/10.1155/2016/7840161
Gibot, P., Tronc, E., Chanéac, C., Jolivet, J. P., Fiorani, D., & Testa, A. M.
(2005). (Co,Fe)Pt nanoparticles by aqueous route; selfassembling, thermal and magnetic properties. Journal of
Magnetism and Magnetic Materials, 290–291, 555–558.
https://doi.org/10.1016/j.jmmm.2004.11.526
Ha, Y., Ko, S., Kim, I., Huang, Y., Mohanty, K., Huh, C., & Maynard, J. A.
(2018). Recent Advances Incorporating Superparamagnetic
Nanoparticles into Immunoassays. ACS Applied Nano Materials,
1(2), 512–521. https://doi.org/10.1021/acsanm.7b00025
Hooshmand, S., Hayat, S. M. G., Ghorbani, A., Khatami, M., Pakravanan,
K., & Darroudi, M. (2021). Preparation and Applications of
Superparamagnetic Iron Oxide Nanoparticles in Novel Drug
Delivery Systems: An Overview. Current Medicinal Chemistry,
28(4), 777–799.
https://doi.org/10.2174/0929867327666200123152006
Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G.,
Gutierrez, M. G., & Fischer, P. (2020). Biocompatible Magnetic
Micro‐ and Nanodevices: Fabrication of FePt Nanopropellers and
Cell Transfection. Advanced Materials, 32(25).
https://doi.org/10.1002/adma.202001114
Lai, S.-M., Tsai, T.-Y., Hsu, C.-Y., Tsai, J.-L., Liao, M.-Y., & Lai, P.-S.
(2012). Bifunctional Silica-Coated Superparamagnetic FePt
Nanoparticles for Fluorescence/MR Dual Imaging. Journal of
Nanomaterials, 2012, 1–7. https://doi.org/10.1155/2012/631584
Liu, Y., Yang, K., Cheng, L., Zhu, J., Ma, X., Xu, H., Li, Y., Guo, L., Gu, H.,
& Liu, Z. (2013). PEGylated FePt@Fe2O3 core-shell magnetic
nanoparticles: Potential theranostic applications and in vivo
toxicity studies. Nanomedicine: Nanotechnology, Biology and
Medicine, 9(7), 1077–1088.
https://doi.org/10.1016/j.nano.2013.02.010
Mehdipour Biregani, Z., & Gharachorloo, M. (2020). Curcumin as a
bioactive compound: biological properties and encapsulation
methods. Journal of Food and Bioprocess Engineering, 3(1), 79–
86. https://doi.org/10.22059/jfabe.2020.76608
Meiguni, M. S. M., Salami, M., Rezaei, K., Aliyari, M. A., Ghaffari, S.-B.,
Emam-Djomeh, Z., Kennedy, J. F., & Ghasemi, A. (2023).
Fabrication and characterization of a succinyl mung bean protein
and arabic gum complex coacervate for curcumin encapsulation.
International Journal of Biological Macromolecules, 224, 170–
180. https://doi.org/10.1016/j.ijbiomac.2022.10.113
Mirmohammad Meiguni, M. S., Salami, M., Rezaei, K., Ghaffari, S., Aliyari,
M. A., Emam‐Djomeh, Z., Barazandegan, Y., & Gruen, I. (2022).
Curcumin‐loaded complex coacervate made of mung bean protein
isolate and succinylated chitosan as a novel medium for curcumin
encapsulation. Journal of Food Science, 87(11), 4930–4944.
https://doi.org/10.1111/1750-3841.16341
Mohammadian, M., Dabbagh Moghaddam, A., Almasi, L., Bohlooli, S., &
Sharifan, A. (2021). The enrichment of emergency food rations
with complexes made of curcumin/quercetin-whey protein
nanofibrils to improve their antioxidant activity. Journal of Food
and Bioprocess Engineering, 4(1), 63–68.
https://doi.org/10.22059/jfabe.2021.316882.1079
Nissinen, T., Näkki, S., Latikka, M., Heinonen, M., Liimatainen, T., Xu, W.,
Ras, R. H. A., Gröhn, O., Riikonen, J., & Lehto, V.-P. (2014).
Facile synthesis of biocompatible superparamagnetic mesoporous
nanoparticles for imageable drug delivery. Microporous and
Mesoporous Materials, 195, 2–8.
https://doi.org/10.1016/j.micromeso.2014.04.014
Pham, X. N., Nguyen, T. P., Pham, T. N., Tran, T. T. N., & Tran, T. V. T.
(2016). Synthesis and characterization of chitosan-coated
magnetite nanoparticles and their application in curcumin drug
delivery. Advances in Natural Sciences: Nanoscience and
Nanotechnology, 7(4), 045010. https://doi.org/10.1088/2043-
6262/7/4/045010
Salamani, A., Merrouche, A., Telli, L., Gómez-Romero, P., & Huertas, Z. C.
(2018). Synthesis and Caracterization of Mesoporous FePO4 as
Positive Electrode Materials for Lithium Batteries. Surface
Engineering and Applied Electrochemistry, 54(1), 55–63.
https://doi.org/10.3103/S106837551801012X
Shi, Y., Lin, M., Jiang, X., & Liang, S. (2015). Recent Advances in FePt
Nanoparticles for Biomedicine. Journal of Nanomaterials, 2015,
1–13. https://doi.org/10.1155/2015/467873
Soomro, R. A., Nafady, A., Sirajuddin, Sherazi, S. T. H., Kalwar, N. H.,
Shah, M. R., & Hallam, K. R. (2015). Catalytic Reductive
Degradation of Methyl Orange Using Air Resilient Copper
Nanostructures. Journal of Nanomaterials, 2015, 1–12.
https://doi.org/10.1155/2015/136164
Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR
imaging and drug delivery. Advanced Drug Delivery Reviews,
60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
Sun, S. (2006). Recent Advances in Chemical Synthesis, Self-Assembly, and
Applications of FePt Nanoparticles. Advanced Materials, 18(4),
393–403. https://doi.org/10.1002/adma.200501464
Teow, S.-Y., Liew, K., Ali, S. A., Khoo, A. S.-B., & Peh, S.-C. (2016).
Antibacterial Action of Curcumin against Staphylococcus
aureus : A Brief Review. Journal of Tropical Medicine, 2016, 1–
10. https://doi.org/10.1155/2016/2853045
Vo, N. T., Ngo, H. D., Do Thi, N. P., Nguyen Thi, K. P., Duong, A. P., &
Lam, V. (2016). Stability Investigation of Ligand-Exchanged
CdSe/ZnS-Y (Y = 3-Mercaptopropionic Acid or
Mercaptosuccinic Acid) through Zeta Potential Measurements.
Journal of Nanomaterials, 2016, 1–8.
https://doi.org/10.1155/2016/8564648
Wang, H. L., Huang, Y., Zhang, Y., Hadjipanayis, G. C., Weller, D., &
Simopoulos, A. (2007). Effects of annealing on the magnetic and
structural properties of FePt nanoparticles prepared by chemical
synthesis. Journal of Magnetism and Magnetic Materials, 310(1),
22–27. https://doi.org/10.1016/j.jmmm.2006.07.024
Wei, D.-H., Lin, T.-K., Liang, Y.-C., & Chang, H.-W. (2021). Formation and
Application of Core–Shell of FePt-Au Magnetic–Plasmonic
Nanoparticles. Frontiers in Chemistry, 9.
https://doi.org/10.3389/fchem.2021.653718
Wiemer, K., Dörmbach, K., Slabu, I., Agrawal, G., Schrader, F., Caumanns,
T., Bourone, S. D. M., Mayer, J., Steitz, J., Simon, U., & Pich, A.
(2017). Hydrophobic superparamagnetic FePt nanoparticles in
hydrophilic poly(N-vinylcaprolactam) microgels: a new
multifunctional hybrid system. Journal of Materials Chemistry B,
5(6), 1284–1292. https://doi.org/10.1039/C6TB02342H
Wu, Q., Liang, S., Zhou, Q., Wang, M., Zhu, Y., & Yang, X. (2015). Watersoluble l-cysteine-coated FePt nanoparticles as dual MRI/CT
imaging contrast agent for glioma. International Journal of
Nanomedicine, 2325. https://doi.org/10.2147/IJN.S75174