Therapeutic potential of Ocimum sanctum flower infusion

Document Type : Original research

Authors

1 DFST, FLFN Wayamba University of Sri Lanka

2 Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka

Abstract

Infusions of different species of edible flowers have been used since ancient times as remedies for several disorders. Ocimum sanctum is a herb used in Ayurvedic treatment due to its bioactive composition and potential therapeutic properties. However edible flowers of this herb have been under-explored and there are no much studies which validate their health potential scientifically. Therefore the present study aims to investigate the bioactivities of O.sanctum flower infusions.
The total phenolic content and total flavonoid content of the infusion was 68.41±0.91 µmol gallic equivalents per g and 8.32±1.44 µmol rutin equivalents per g respectively. Considering the antioxidant activity, the infusion was able to scavenge hydrogen peroxide, inhibit lipid peroxidation and expressed reducing power. The infusion also expressed good anti-diabetic property by inhibiting α-amylase, α-glucosidase and amyloglucosidase activities with IC50 values 2.05±0.21, 97.21±1.21 and 2.84±0.72 µg/mL respectively. The ability of the infusion to inhibit angiotensin converting enzyme and acetylcholinesterase enzyme indicates the potential of the infusion to be used as anti-hypertensive agent and anti-Alzheimer’s agent respectively.
O.sanctum infusion is a good source of phenolic compounds which could exert antioxidant, anti-inflammatory, anti-diabetic, anti-hypertensive and anti-Alzheimer’s activity. Therefore, it can be used as functional ingredient with wide applications in food and pharmaceutical industry.

Keywords

Main Subjects

Biswas, N. P., & Biswas, A. K. (2005). Evaluation of some leaf dusts as
grain protectant against rice weevil Sitophilus oryzae
(Linn.). Environment and Ecology, 23(3), 485.
Adewusi, E. A., Moodley, N., & Steenkamp, V. (2011). Antioxidant and
acetylcholinesterase inhibitory activity of selected southern
African medicinal plants. South African Journal of Botany, 77(3),
638–644. https://doi.org/10.1016/j.sajb.2010.12.009
Aleixandre, A., Gil, J. V., Sineiro, J., & Rosell, C. M. (2022). Understanding
phenolic acids inhibition of α-amylase and α-glucosidase and
influence of reaction conditions. Food Chemistry, 372, 131231.
Ali, M. Y., Seong, S. H., Jung, H. A., Choi, J. S. (2019) Angiotensin-I
converting enzyme inhibitory activity of coumarins from
Angelica decursiva. Molecules 2019, 24, 3937
Chaudhary, Abha; Sharma, Sanjay; Mittal, Ashwani; Gupta, Sanjeev; Dua,
Anita (2020). Phytochemical and antioxidant profiling of
Ocimum sanctum. Journal of Food Science and Technology,
57(10), 3852-3863. doi:10.1007/s13197-020-04417-2
Chiranthika, N. N. G., Chandrasekara, A., & Gunathilake, K. D. P. P. (2021).
In vitro α amylase and amyloglucosidase inhibitory activities of
selected underutilized cereals, yams and root crops. Journal of
Medicinal Plants, 9(3), 105-110.
Das, S., & De, B. (2013). Evaluation of Angiotensin I-Converting Enzyme
(ACE) inhibitory potential of some underutilized indigenous
fruits of West Bengal using an in vitro model. Fruits, 68(6), 499-
506.
Elya, B., Basah, K., Munim, A., Yuliastuti, W., Bangun, A., & Septiana, E.
(2012). Screening ofα-Glucosidase Inhibitory Activity from
Some Plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and
Rubiaceae. Journal of Biomedicine and Biotechnology, 2012, 1–
6. https://doi.org/10.1155/2012/281078
Felder, C.C., Bymaster, F.P., Ward, J., DeLapp, N., (2000). Therapeutic
opportunities for muscarinic receptors in the central nervous
system. Journal of Medical Chemistry 43, 4333–4353
Félix, R., Valentão, P., Andrade, P. B., Félix, C., Novais, S. C., & Lemos, M.
F. (2020). Evaluating the In Vitro Potential of Natural Extracts to
Protect Lipids from Oxidative Damage. Antioxidants, 9(3), 231.
Gambhire, M. N., Juvekar, A. R., & Wankhede, S. S. (2009). Antiinflammatory
activity of aqueous extract of Cinnamomum tamala
leaves by in vivo and in vitro methods. Journal of Pharmacy
Research, 2(9), 1521-1524.
Geetha, R. Kedlaya; D.M. Vasudevan (2004). Inhibition of lipid peroxidation
by botanical extracts of Ocimum sanctum: In vivo and in vitro
studies, 76(1), 0–28. https://doi.org/10.1016/j.lfs.2004.05.036
Gunathilake, K. D. P. P., Ranaweera, K. K. D. S., & Rupasinghe, H. V.
(2018). In vitro anti-inflammatory properties of selected green
leafy vegetables. Biomedicines, 6(4), 107.
Guzik, T. J., Korbut, R., & Adamek-Guzik, T. (2003). Nitric oxide and
superoxide in inflammation and immune regulation. Journal of
physiology and pharmacology: an official journal of the Polish
Physiological Society, 54(4), 469–487.
Heendeniya, S.N., Ratnasooriya and W.D., Pathirana, R.N., (2018). In vitro
investigation of anti-inflammatory activity and evaluation of
phytochemical profile of Syzygium caryophyllatum. Journal of.
Pharmacognosy and Phytochemistry 7 (1), 1759–1763.
Hussain, F., Jahan, N., Rahman, K., Sultana, B., & Bahadur, A. (2018).
Identification of Hypotensive Biofunctional Compounds of
Coriandrum sativum and Evaluation of Their Angiotensin-
Converting Enzyme (ACE) Inhibition Potential. Oxidative
Medicine and Cellular Longevity, 2018, 4643736.
https://doi.org/10.1155/2018/4643736
Jaggi, R., Reecha Madaan, & Singh, B. (2003). Anticonvulsant potential of
holy basil, Ocimum sanctum Linn., and its cultures. 41(11),
1329–1333.
Janarny, G., & Gunathilake, K.D.P.P (2020). Changes in rice bran bioactives,
their bioactivity, bioaccessibility and bioavailability with solidstate
fermentation by Rhizopus oryzae. Biocatalysis and
agricultural biotechnology, 23, 101510.
https://doi.org/10.1016/j.bcab.2020.101510
Jukic, M., Politeo, O., Maksimovic, M., Milos, M., & Milos, M. (2007). In
vitro acetylcholinesterase inhibitory properties of thymol,
carvacrol and their derivatives thymoquinone and
thymohydroquinone. Phytotherapy Research, 21(3), 259-261.
Kelm, M. A., Nair, M. G., Strasburg, G. M., & DeWitt, D. L. (2000).
Antioxidant and cyclooxygenase inhibitory phenolic compounds
from Ocimum sanctum Linn. Phytomedicine, 7(1), 7–13.
https://doi.org/10.1016/s0944-7113(00)80015-x
Keser, S., Sait Çelik, Semra Turkoglu, Yilmaz, Ö., & İsmail Türkoğlu.
(2012). Hydrogen Peroxide Radical Scavenging and Total
Antioxidant Activity of Hawthorn. Chem J, 2(1), 9-12.
Kumar, R., Saha, P., Lokare, P., Datta, K., Selvakumar, P., & Chourasia, A.
(2022). A systemic review of Ocimum sanctum (Tulsi):
Morphological characteristics, phytoconstituents and therapeutic
applications. International Journal for Research in Applied
Sciences and Biotechnology, 9(2), 221-226.
Kwon, E. K., Kim, Y. E., Lee, C. H., & Kim, H. Y. (2006). Screening of nine
herbs with biological activities on ACE inhibition, HMG-CoA
reductase inhibition, and fibrinolysis. Korean Journal of Food
Science and Technology, 38(5), 691-698.
Mondal, S., Bijay Ranjan Mirdha, & Sushil Chandra Mahapatra. (2010). The
science behind sacredness of Tulsi (Ocimum sanctum
Linn.). 53(4), 291–306.
Ohkowa, M., Ohisi, N., & Yagi, K. (1979). Assay for lipid peroxides in
animal tissue by thiobarbituric acid reaction. Analytical
Biochemistry, 95, 351–358.
Olennikov, D. N., Kashchenko, N. I., Chirikova, N. K., Akobirshoeva, A.,
Zilfikarov, I. N., & Vennos, C. (2017). Isorhamnetin and
quercetin derivatives as anti-acetylcholinesterase principles of
marigold (Calendula officinalis) flowers and
preparations. International Journal of Molecular Sciences, 18(8),
1685.
Pandi, A., & Kalappan, V. M. (2021). Pharmacological and therapeutic
applications of Sinapic acid—An updated review. Molecular
Biology Reports, 48(4), 3733-3745.
Reshma, A. K., & Brindha, P. (2014). In vitro anti-inflammatory, antioxidant
and nephroprotective studies on leaves of Aegle marmelos and
Ocimum sanctum. Asian Journal of Pharmaceutical and Clinical
Research, 7(4).
Rodrigues, M. J., Neves, V., Martins, A., Rauter, A. P., Neng, N. R.,
Nogueira, J. M., Custódio, L. (2016). In vitro antioxidant and antiinflammatory
properties of Limonium algarvense flowers’
infusions and decoctions: A comparison with green tea (Camellia
sinensis). Food Chemistry, 200, 322-329.
Sakat, S., Juvekar, A. R., & Gambhire, M. N. (2010). In vitro antioxidant and
anti-inflammatory activity of methanol extract of Oxalis
corniculata Linn. International Journal of Pharmacy and
Pharmaceutical Sciences, 2(1), 146-155.
Sharma, A. D., Kaur, I., Angish, S., Thakur, A., Sania, S., & Singh, A. (2022).
Comparative phytochemistry, antioxidant, antidiabetic, and antiinflammatory
activities of traditionally used Ocimum basilicum
L. Ocimum gratissimum L., and Ocimum tenuiflorum
L. BioTechnologia, 103(2), 131.
Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021).
Determination of total flavonoid content by aluminum chloride
assay: A critical evaluation. LWT, 150, 111932.
https://doi.org/10.1016/j.lwt.2021.111932
Sroka, Z., & Cisowski, W. (2003). Hydrogen peroxide scavenging,
antioxidant and anti-radical activity of some phenolic acids. Food
and Chemical Toxicology, 41(6), 753–758.
https://doi.org/10.1016/s0278-6915(02)00329-0
Sun, Lijun; Wang, Yueyi; Miao, Ming (2020). Inhibition of amylase by
polyphenolic compounds: Substrate digestion, binding
interactions and nutritional intervention. Trends in Food Science
& Technology, 104, 190–
207. https://doi.org/doi:10.1016/j.tifs.2020.08.003
Ullah, S., Naseem, R. A. U. F., Hussain, A., Sheikh, I. A., & Farooq, M.
(2022). HPLC profile of phenolic acids and flavonoids of
Ocimum sanctum and O. basilicum. International Journal of Plant
Based Pharmaceuticals, 2(2), 205-209.
Uma Devi, P., Ganasoundari, A., Vrinda, B., Srinivasan, K. K., &
Unnikrishnan, M. K. (2000). Radiation Protection by the Ocimum
Flavonoids Orientin and Vicenin: Mechanisms of
Action. Radiation Research, 154(4), 455–460.
https://doi.org/10.1667/00337587(2000)154[0455:rpbtof]2.0.co;
2
Vastrad, J. V., Goudar, G., Byadgi, S. A., Devi, R. D., & Kotur, R. (2015).
Identification of bio-active components in leaf extracts of Aloe
vera, Ocimum tenuiflorum (Tulasi) and Tinospora cordifolia
(Amrutballi). Journal of Medicinal Plants Research, 9(28), 764-
770.
Xie, Y., & Zhang, W. (2012). Antihypertensive activity of Rosa rugosa
Thunb. flowers: Angiotensin I converting enzyme inhibitor.
Journal of Ethnopharmacology, 144(3), 562–566.
https://doi.org/10.1016/j.jep.2012.09.038
Xiong, Y., Ng, K., Marriott, P. J., Warner, R. D., Shen, S., Tang, H., Liang,
Z., & Fang, Z. (2020). In Vitro α-Glucosidase and α-Amylase
inhibitory activities of free and bound phenolic extracts from the
bran and kernel fractions of five sorghum grain genotypes. Foods,
9(9), 1301. https://doi.org/10.3390/foods9091301
Zhao, D., Zhou, A., Du, Z., Zhang, Y., Zhang, K., & Ma, Y. (2015).
Coumarins with α-glucosidase and α-amylase inhibitory activities
from the flower of Edgeworthia gardneri. Fitoterapia, 107, 122–
127. https://doi.org/10.1016/j.fitote.2015.10.012