Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl
gellan gum as a mucoadhesive polymer. International Journal of
Biological Macromolecules, 53, 114-121.
Alexander, A., Khichariya, A., Gupta, S., Patel, R. J., Giri, T. K., & Tripathi,
D. K. (2013). Recent expansions in an emergent novel drug
delivery technology: Emulgel. Journal of Controlled
Release, 171(2), 122-132.
Al-Shannaq, R., Farid, M., Al-Muhtaseb, S., & Kurdi, J. (2015). Emulsion
stability and cross-linking of PMMA microcapsules containing
phase change materials. Solar Energy Materials and Solar
Cells, 132, 311-318.
Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nanoemulsification. International Journal of Pharmaceutics, 377(1),
142-147.
Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion
formulation using spontaneous emulsification: solvent, oil and
surfactant optimization. International Journal of
Pharmaceutics, 280 (1-2), 241-251.
Budowski, P., & Markley, K. S. (1951). The chemical and physiological
properties of sesame oil. Chemical Reviews, 48(1), 125-151.
Chang, Y., & McClements, D. J. (2014). Optimization of orange oil
nanoemulsion formation by isothermal low-energy methods:
influence of the oil phase, surfactant, and temperature. Journal of
Agricultural and Food Chemistry, 62(10), 2306-2312.
Davidov-Pardo, G., & McClements, D. J. (2015). Nutraceutical delivery
systems: resveratrol encapsulation in grape seed oil nanoemulsions
formed by spontaneous emulsification. Food Chemistry, 167, 205-
212.
Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009).
Microstructure and rheological properties of psyllium
polysaccharide gel. Food Hydrocolloids, 23(6), 1542-1547.
Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin
D nanoemulsion-based delivery systems by spontaneous
emulsification: factors affecting particle size and stability. Food
Chemistry, 171, 117-122.
Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the
formation and characterization of a new type of colloidal drug
delivery system: nanostructured lipid carriers. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 315(1-3),
210-216.
Horinaka, J. I., Kani, K., Hori, Y., & Maeda, S. (2004). Effect of pH on the
conformation of gellan chains in aqueous systems. Biophysical
Chemistry, 111(3), 223-227.
Huibers, P. D., & Shah, D. O. (1997). Evidence for synergism in nonionic
surfactant mixtures: enhancement of solubilization in water-in-oil
microemulsions. Langmuir, 13(21), 5762-5765.
Israelachvili, J. N. (2011). Intermolecular and surface forces. (3rd ed.).
Elsevier science.
Iurciuc, C. E., Savin, A., Lungu, C., Martin, P., & Popa, M. (2016). Gellan.
Food applications. Cellulose Chemistry and Technology, 50, 1-13.
Kalshetti, P. P., Rajendra, V. B., Dixit, D. N., & Parekh, P. P. (2012).
Hydrogels as a drug delivery system and applications: a
review. International Journal of Pharmacy and Pharmaceutical
Sciences, 4(1), 1-7.
Komaiko, J., & McClements, D, J. (2015). Food-grade nanoemulsion filled
hydrogels formed by spontaneous emulsification and gelation:
optical properties, rheology, and stability. Food Hydrocolloids, 46,
67-75.
Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a
review. Journal of Dispersion Science and Technology, 30(9),
1363-1383.
Latreille, B., & Paquin, P. (1990). Evaluation of emulsion stability by
centrifugation with conductivity measurements. Journal of Food
Science, 55(6), 1666-1668.
Liang, L., Line, V. L. S., Remondetto, G. E., & Subirade, M. (2010). In vitro
release of α-tocopherol from emulsion-loaded β-lactoglobulin
gels. International Dairy Journal, 20(3), 176-181.
Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Rheological analysis of
emulsion-filled gels based on high acyl gellan gum. Food
Hydrocolloids, 30(2), 672-680.
Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set
hydrogels as controlled delivery devices for nutraceutical
compounds. Food hydrocolloids, 23(7), 1647-1653.
Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and
microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365-
371.
Marianecci, C., Marzio, L. D., Rinaldi, F., Esposito, S., Carafa, M. (2013).
Niosoms. In I. F. Uchegbu, A. G. Schätzlein, W. P. Cheng, A.
Lalatsa (Eds.), Fundamentals of Pharmaceutical Nanoscience (pp.
67–68). New York, USA: Springer.
McClements, D, J. (2015). Food emulsions: principles, practices, and
techniques. (3rd ed.). Boca Raton. CRC Press. (Chapter 1).
McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and
functional performance. Soft Matter, 7(6), 2297-2316.
McClements, D. J. (2012). Nanoemulsions versus microemulsions:
terminology, differences, and similarities. Soft Matter, 8(6), 1719-
1729.
Moayedzadeh, S., Gunasekaran, S., & Madadlou, A. (2018). Spontaneous
emulsification of fish oil at a substantially low surfactant-to-oil
ratio: Emulsion characterization and filled hydrogel
formation. Food Hydrocolloids, 82, 11-18.
Morris, E. R., Nishinari, K., & Rinaudo, M. (2012). Gelation of gellan–a
review. Food Hydrocolloids, 28(2), 373-411.
Mun, S., Kim, Y. R., & McClements, D. J. (2015). Control of β-carotene
bioaccessibility using starch-based filled hydrogels. Food
Chemistry, 173, 454-461.
Murillo-Martínez, M. M., & Tecante, A. (2014). Preparation of the sodium
salt of high acyl gellan and characterization of its structure,
thermal and rheological behaviors. Carbohydrate Polymers, 108,
313-320.
Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids. (2nd
ed.). Elsevier. (Chapter 8).
Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilized
by both low molecular weight surfactants and colloidal particles:
The effect of surfactant type and concentration. Journal of Colloid
and Interface Science, 352(1), 128-135.
Poletto, F., Beck, R., Guterres, S., Polmann, A. (2011). Polymeric
nanocapsules: Concepts and applications. In R. Beck, S. Guterres,
A. Pohlmann (Eds.), Nanocosmetics and nanomedicines (pp. 57‒
58), New York, USA: Springer.
Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized
by model food-grade emulsifiers using high-pressure
homogenization: factors affecting particle size. Food
Hydrocolloids, 25(5), 1000-1008.
Singh, V. K., Pandey, P. M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A., &
Pal, K. (2016). Development of soy lecithin based novel selfassembled emulsion hydrogels. Journal of the mechanical
behavior of biomedical materials, 55, 250-263.
Sudhamani, S. R., Prasad, M. S., & Sankar, K. U. (2003). DSC and FTIR
studies on gellan and polyvinyl alcohol (PVA) blend films. Food
Hydrocolloids, 17(3), 245-250.
Tang, C. H., Chen, L., & Foegeding, E. A. (2011). Mechanical and waterholding properties and microstructures of soy protein isolate
emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and
transglutaminase: Influence of thermal treatments before and/or
after emulsification. Journal of Agricultural and Food
Chemistry, 59(8), 4071-4077.
Vilela, J. A. P., & da Cunha, R. L. (2016). High acyl gellan as an emulsion
stabilizer. Carbohydrate Polymers, 139, 115-124.
Wang, F., Wen, Y., & Bai, T. (2016). The composite hydrogels of polyvinyl
alcohol–gellan gum-Ca2+ with improved network structure and
mechanical property. Materials Science and Engineering: C, 69,
268-275.
Wang, L., Dong, J., Chen, J., Eastoe, J., & Li, X. (2009). Design and
optimization of a new self-nanoemulsifying drug delivery
system. Journal of Colloid and Interface Science, 330(2), 443-448.
Wang, Y., Li, D., Wang, L. J., & Adhikari, B. (2011). The effect of addition
of flaxseed gum on the emulsion properties of soybean protein
isolate (SPI). Journal of Food Engineering, 104(1), 56-62.
Yamamoto, F., & Cunha, R. L. (2007). Acid gelation of gellan: effect of final
pH and heat treatment conditions. Carbohydrate Polymers, 68(3),
517-527.
Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl
gellan gum as a mucoadhesive polymer. International Journal of
Biological Macromolecules, 53, 114-121.
Alexander, A., Khichariya, A., Gupta, S., Patel, R. J., Giri, T. K., & Tripathi,
D. K. (2013). Recent expansions in an emergent novel drug
delivery technology: Emulgel. Journal of Controlled
Release, 171(2), 122-132.
Al-Shannaq, R., Farid, M., Al-Muhtaseb, S., & Kurdi, J. (2015). Emulsion
stability and cross-linking of PMMA microcapsules containing
phase change materials. Solar Energy Materials and Solar
Cells, 132, 311-318.
Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nanoemulsification. International Journal of Pharmaceutics, 377(1),
142-147.
Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion
formulation using spontaneous emulsification: solvent, oil and
surfactant optimization. International Journal of
Pharmaceutics, 280 (1-2), 241-251.
Budowski, P., & Markley, K. S. (1951). The chemical and physiological
properties of sesame oil. Chemical Reviews, 48(1), 125-151.
Chang, Y., & McClements, D. J. (2014). Optimization of orange oil
nanoemulsion formation by isothermal low-energy methods:
influence of the oil phase, surfactant, and temperature. Journal of
Agricultural and Food Chemistry, 62(10), 2306-2312.
Davidov-Pardo, G., & McClements, D. J. (2015). Nutraceutical delivery
systems: resveratrol encapsulation in grape seed oil nanoemulsions
formed by spontaneous emulsification. Food Chemistry, 167, 205-
212.
Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009).
Microstructure and rheological properties of psyllium
polysaccharide gel. Food Hydrocolloids, 23(6), 1542-1547.
Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin
D nanoemulsion-based delivery systems by spontaneous
emulsification: factors affecting particle size and stability. Food
Chemistry, 171, 117-122.
Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the
formation and characterization of a new type of colloidal drug
delivery system: nanostructured lipid carriers. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 315(1-3),
210-216.
Horinaka, J. I., Kani, K., Hori, Y., & Maeda, S. (2004). Effect of pH on the
conformation of gellan chains in aqueous systems. Biophysical
Chemistry, 111(3), 223-227.
Huibers, P. D., & Shah, D. O. (1997). Evidence for synergism in nonionic
surfactant mixtures: enhancement of solubilization in water-in-oil
microemulsions. Langmuir, 13(21), 5762-5765.
Israelachvili, J. N. (2011). Intermolecular and surface forces. (3rd ed.).
Elsevier science.
Iurciuc, C. E., Savin, A., Lungu, C., Martin, P., & Popa, M. (2016). Gellan.
Food applications. Cellulose Chemistry and Technology, 50, 1-13.
Kalshetti, P. P., Rajendra, V. B., Dixit, D. N., & Parekh, P. P. (2012).
Hydrogels as a drug delivery system and applications: a
review. International Journal of Pharmacy and Pharmaceutical
Sciences, 4(1), 1-7.
Komaiko, J., & McClements, D, J. (2015). Food-grade nanoemulsion filled
hydrogels formed by spontaneous emulsification and gelation:
optical properties, rheology, and stability. Food Hydrocolloids, 46,
67-75.
Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a
review. Journal of Dispersion Science and Technology, 30(9),
1363-1383.
Latreille, B., & Paquin, P. (1990). Evaluation of emulsion stability by
centrifugation with conductivity measurements. Journal of Food
Science, 55(6), 1666-1668.
Liang, L., Line, V. L. S., Remondetto, G. E., & Subirade, M. (2010). In vitro
release of α-tocopherol from emulsion-loaded β-lactoglobulin
gels. International Dairy Journal, 20(3), 176-181.
Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Rheological analysis of
emulsion-filled gels based on high acyl gellan gum. Food
Hydrocolloids, 30(2), 672-680.
Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set
hydrogels as controlled delivery devices for nutraceutical
compounds. Food hydrocolloids, 23(7), 1647-1653.
Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and
microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365-
371.
Marianecci, C., Marzio, L. D., Rinaldi, F., Esposito, S., Carafa, M. (2013).
Niosoms. In I. F. Uchegbu, A. G. Schätzlein, W. P. Cheng, A.
Lalatsa (Eds.), Fundamentals of Pharmaceutical Nanoscience (pp.
67–68). New York, USA: Springer.
McClements, D, J. (2015). Food emulsions: principles, practices, and
techniques. (3rd ed.). Boca Raton. CRC Press. (Chapter 1).
McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and
functional performance. Soft Matter, 7(6), 2297-2316.
McClements, D. J. (2012). Nanoemulsions versus microemulsions:
terminology, differences, and similarities. Soft Matter, 8(6), 1719-
1729.
Moayedzadeh, S., Gunasekaran, S., & Madadlou, A. (2018). Spontaneous
emulsification of fish oil at a substantially low surfactant-to-oil
ratio: Emulsion characterization and filled hydrogel
formation. Food Hydrocolloids, 82, 11-18.
Morris, E. R., Nishinari, K., & Rinaudo, M. (2012). Gelation of gellan–a
review. Food Hydrocolloids, 28(2), 373-411.
Mun, S., Kim, Y. R., & McClements, D. J. (2015). Control of β-carotene
bioaccessibility using starch-based filled hydrogels. Food
Chemistry, 173, 454-461.
Murillo-Martínez, M. M., & Tecante, A. (2014). Preparation of the sodium
salt of high acyl gellan and characterization of its structure,
thermal and rheological behaviors. Carbohydrate Polymers, 108,
313-320.
Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids. (2nd
ed.). Elsevier. (Chapter 8).
Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilized
by both low molecular weight surfactants and colloidal particles:
The effect of surfactant type and concentration. Journal of Colloid
and Interface Science, 352(1), 128-135.
Poletto, F., Beck, R., Guterres, S., Polmann, A. (2011). Polymeric
nanocapsules: Concepts and applications. In R. Beck, S. Guterres,
A. Pohlmann (Eds.), Nanocosmetics and nanomedicines (pp. 57‒
58), New York, USA: Springer.
Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized
by model food-grade emulsifiers using high-pressure
homogenization: factors affecting particle size. Food
Hydrocolloids, 25(5), 1000-1008.
Singh, V. K., Pandey, P. M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A., &
Pal, K. (2016). Development of soy lecithin based novel selfassembled emulsion hydrogels. Journal of the mechanical
behavior of biomedical materials, 55, 250-263.
Sudhamani, S. R., Prasad, M. S., & Sankar, K. U. (2003). DSC and FTIR
studies on gellan and polyvinyl alcohol (PVA) blend films. Food
Hydrocolloids, 17(3), 245-250.
Tang, C. H., Chen, L., & Foegeding, E. A. (2011). Mechanical and waterholding properties and microstructures of soy protein isolate
emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and
transglutaminase: Influence of thermal treatments before and/or
after emulsification. Journal of Agricultural and Food
Chemistry, 59(8), 4071-4077.
Vilela, J. A. P., & da Cunha, R. L. (2016). High acyl gellan as an emulsion
stabilizer. Carbohydrate Polymers, 139, 115-124.
Wang, F., Wen, Y., & Bai, T. (2016). The composite hydrogels of polyvinyl
alcohol–gellan gum-Ca2+ with improved network structure and
mechanical property. Materials Science and Engineering: C, 69,
268-275.
Wang, L., Dong, J., Chen, J., Eastoe, J., & Li, X. (2009). Design and
optimization of a new self-nanoemulsifying drug delivery
system. Journal of Colloid and Interface Science, 330(2), 443-448.
Wang, Y., Li, D., Wang, L. J., & Adhikari, B. (2011). The effect of addition
of flaxseed gum on the emulsion properties of soybean protein
isolate (SPI). Journal of Food Engineering, 104(1), 56-62.
Yamamoto, F., & Cunha, R. L. (2007). Acid gelation of gellan: effect of final
pH and heat treatment conditions. Carbohydrate Polymers, 68(3),
517-527.