Gelation of gellan-stabilized oil-in-water emulsions using different gelling agents: fabrication and characterization

Document Type : Original research

Authors

1 Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Karaj, Iran

2 Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Biosystems Engineering, University of Tehran

Abstract

Gellan gum was exploited to modulate the stability of sesame oil-in-water emulsion and fabricated stable droplets with mean size of ̴ 9 μm till 30 days, then gelified by CaCl2 solution with final concentration of 55mM or 1% GDL. Enrichment with CaCl2 increased the amount of compact structures in gels in conjunction with decreasing WHC values and textural features modification. Gellan bundles as visualised by microscopic images conferred a remarkable influence to gel samples; enrichment with GDL or control gels increased the WHC value and formed less coarse networks. Based on Fourier transform infrared (FTIR) spectroscopy it was suggested that was no major changes in the functional groups of different gel samples, also according to the results of XRD analysis all the emulsion gels had an amorphous nature. The results indicated close relationships between physicochemical properties and microstructures of gellan-stabilized emulsion gels and would be of vital importance for extending the present knowledge about the preparation and properties of emulsion gels from gellan gum.

Keywords

Main Subjects

Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl
gellan gum as a mucoadhesive polymer. International Journal of
Biological Macromolecules, 53, 114-121.
Alexander, A., Khichariya, A., Gupta, S., Patel, R. J., Giri, T. K., & Tripathi,
D. K. (2013). Recent expansions in an emergent novel drug
delivery technology: Emulgel. Journal of Controlled
Release, 171(2), 122-132.
Al-Shannaq, R., Farid, M., Al-Muhtaseb, S., & Kurdi, J. (2015). Emulsion
stability and cross-linking of PMMA microcapsules containing
phase change materials. Solar Energy Materials and Solar
Cells, 132, 311-318.
Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nanoemulsification. International Journal of Pharmaceutics, 377(1),
142-147.
Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion
formulation using spontaneous emulsification: solvent, oil and
surfactant optimization. International Journal of
Pharmaceutics, 280 (1-2), 241-251.
Budowski, P., & Markley, K. S. (1951). The chemical and physiological
properties of sesame oil. Chemical Reviews, 48(1), 125-151.
Chang, Y., & McClements, D. J. (2014). Optimization of orange oil
nanoemulsion formation by isothermal low-energy methods:
influence of the oil phase, surfactant, and temperature. Journal of
Agricultural and Food Chemistry, 62(10), 2306-2312.
Davidov-Pardo, G., & McClements, D. J. (2015). Nutraceutical delivery
systems: resveratrol encapsulation in grape seed oil nanoemulsions
formed by spontaneous emulsification. Food Chemistry, 167, 205-
212.
Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009).
Microstructure and rheological properties of psyllium
polysaccharide gel. Food Hydrocolloids, 23(6), 1542-1547.
Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin
D nanoemulsion-based delivery systems by spontaneous
emulsification: factors affecting particle size and stability. Food
Chemistry, 171, 117-122.
Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the
formation and characterization of a new type of colloidal drug
delivery system: nanostructured lipid carriers. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 315(1-3),
210-216.
Horinaka, J. I., Kani, K., Hori, Y., & Maeda, S. (2004). Effect of pH on the
conformation of gellan chains in aqueous systems. Biophysical
Chemistry, 111(3), 223-227.
Huibers, P. D., & Shah, D. O. (1997). Evidence for synergism in nonionic
surfactant mixtures: enhancement of solubilization in water-in-oil
microemulsions. Langmuir, 13(21), 5762-5765.
Israelachvili, J. N. (2011). Intermolecular and surface forces. (3rd ed.).
Elsevier science.
Iurciuc, C. E., Savin, A., Lungu, C., Martin, P., & Popa, M. (2016). Gellan.
Food applications. Cellulose Chemistry and Technology, 50, 1-13.
Kalshetti, P. P., Rajendra, V. B., Dixit, D. N., & Parekh, P. P. (2012).
Hydrogels as a drug delivery system and applications: a
review. International Journal of Pharmacy and Pharmaceutical
Sciences, 4(1), 1-7.
Komaiko, J., & McClements, D, J. (2015). Food-grade nanoemulsion filled
hydrogels formed by spontaneous emulsification and gelation:
optical properties, rheology, and stability. Food Hydrocolloids, 46,
67-75.
Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a
review. Journal of Dispersion Science and Technology, 30(9),
1363-1383.
Latreille, B., & Paquin, P. (1990). Evaluation of emulsion stability by
centrifugation with conductivity measurements. Journal of Food
Science, 55(6), 1666-1668.
Liang, L., Line, V. L. S., Remondetto, G. E., & Subirade, M. (2010). In vitro
release of α-tocopherol from emulsion-loaded β-lactoglobulin
gels. International Dairy Journal, 20(3), 176-181.
Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Rheological analysis of
emulsion-filled gels based on high acyl gellan gum. Food
Hydrocolloids, 30(2), 672-680.
Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set
hydrogels as controlled delivery devices for nutraceutical
compounds. Food hydrocolloids, 23(7), 1647-1653.
Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and
microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365-
371.
Marianecci, C., Marzio, L. D., Rinaldi, F., Esposito, S., Carafa, M. (2013).
Niosoms. In I. F. Uchegbu, A. G. Schätzlein, W. P. Cheng, A.
Lalatsa (Eds.), Fundamentals of Pharmaceutical Nanoscience (pp.
67–68). New York, USA: Springer.
McClements, D, J. (2015). Food emulsions: principles, practices, and
techniques. (3rd ed.). Boca Raton. CRC Press. (Chapter 1).
McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and
functional performance. Soft Matter, 7(6), 2297-2316.
McClements, D. J. (2012). Nanoemulsions versus microemulsions:
terminology, differences, and similarities. Soft Matter, 8(6), 1719-
1729.
Moayedzadeh, S., Gunasekaran, S., & Madadlou, A. (2018). Spontaneous
emulsification of fish oil at a substantially low surfactant-to-oil
ratio: Emulsion characterization and filled hydrogel
formation. Food Hydrocolloids, 82, 11-18.
Morris, E. R., Nishinari, K., & Rinaudo, M. (2012). Gelation of gellan–a
review. Food Hydrocolloids, 28(2), 373-411.
Mun, S., Kim, Y. R., & McClements, D. J. (2015). Control of β-carotene
bioaccessibility using starch-based filled hydrogels. Food
Chemistry, 173, 454-461.
Murillo-Martínez, M. M., & Tecante, A. (2014). Preparation of the sodium
salt of high acyl gellan and characterization of its structure,
thermal and rheological behaviors. Carbohydrate Polymers, 108,
313-320.
Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids. (2nd
ed.). Elsevier. (Chapter 8).
Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilized
by both low molecular weight surfactants and colloidal particles:
The effect of surfactant type and concentration. Journal of Colloid
and Interface Science, 352(1), 128-135.
Poletto, F., Beck, R., Guterres, S., Polmann, A. (2011). Polymeric
nanocapsules: Concepts and applications. In R. Beck, S. Guterres,
A. Pohlmann (Eds.), Nanocosmetics and nanomedicines (pp. 57‒
58), New York, USA: Springer.
Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized
by model food-grade emulsifiers using high-pressure
homogenization: factors affecting particle size. Food
Hydrocolloids, 25(5), 1000-1008.
Singh, V. K., Pandey, P. M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A., &
Pal, K. (2016). Development of soy lecithin based novel selfassembled emulsion hydrogels. Journal of the mechanical
behavior of biomedical materials, 55, 250-263.
Sudhamani, S. R., Prasad, M. S., & Sankar, K. U. (2003). DSC and FTIR
studies on gellan and polyvinyl alcohol (PVA) blend films. Food
Hydrocolloids, 17(3), 245-250.
Tang, C. H., Chen, L., & Foegeding, E. A. (2011). Mechanical and waterholding properties and microstructures of soy protein isolate
emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and
transglutaminase: Influence of thermal treatments before and/or
after emulsification. Journal of Agricultural and Food
Chemistry, 59(8), 4071-4077.
Vilela, J. A. P., & da Cunha, R. L. (2016). High acyl gellan as an emulsion
stabilizer. Carbohydrate Polymers, 139, 115-124.
Wang, F., Wen, Y., & Bai, T. (2016). The composite hydrogels of polyvinyl
alcohol–gellan gum-Ca2+ with improved network structure and
mechanical property. Materials Science and Engineering: C, 69,
268-275.
Wang, L., Dong, J., Chen, J., Eastoe, J., & Li, X. (2009). Design and
optimization of a new self-nanoemulsifying drug delivery
system. Journal of Colloid and Interface Science, 330(2), 443-448.
Wang, Y., Li, D., Wang, L. J., & Adhikari, B. (2011). The effect of addition
of flaxseed gum on the emulsion properties of soybean protein
isolate (SPI). Journal of Food Engineering, 104(1), 56-62.
Yamamoto, F., & Cunha, R. L. (2007). Acid gelation of gellan: effect of final
pH and heat treatment conditions. Carbohydrate Polymers, 68(3),
517-527.
Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl
gellan gum as a mucoadhesive polymer. International Journal of
Biological Macromolecules, 53, 114-121.
Alexander, A., Khichariya, A., Gupta, S., Patel, R. J., Giri, T. K., & Tripathi,
D. K. (2013). Recent expansions in an emergent novel drug
delivery technology: Emulgel. Journal of Controlled
Release, 171(2), 122-132.
Al-Shannaq, R., Farid, M., Al-Muhtaseb, S., & Kurdi, J. (2015). Emulsion
stability and cross-linking of PMMA microcapsules containing
phase change materials. Solar Energy Materials and Solar
Cells, 132, 311-318.
Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nanoemulsification. International Journal of Pharmaceutics, 377(1),
142-147.
Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion
formulation using spontaneous emulsification: solvent, oil and
surfactant optimization. International Journal of
Pharmaceutics, 280 (1-2), 241-251.
Budowski, P., & Markley, K. S. (1951). The chemical and physiological
properties of sesame oil. Chemical Reviews, 48(1), 125-151.
Chang, Y., & McClements, D. J. (2014). Optimization of orange oil
nanoemulsion formation by isothermal low-energy methods:
influence of the oil phase, surfactant, and temperature. Journal of
Agricultural and Food Chemistry, 62(10), 2306-2312.
Davidov-Pardo, G., & McClements, D. J. (2015). Nutraceutical delivery
systems: resveratrol encapsulation in grape seed oil nanoemulsions
formed by spontaneous emulsification. Food Chemistry, 167, 205-
212.
Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009).
Microstructure and rheological properties of psyllium
polysaccharide gel. Food Hydrocolloids, 23(6), 1542-1547.
Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin
D nanoemulsion-based delivery systems by spontaneous
emulsification: factors affecting particle size and stability. Food
Chemistry, 171, 117-122.
Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the
formation and characterization of a new type of colloidal drug
delivery system: nanostructured lipid carriers. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 315(1-3),
210-216.
Horinaka, J. I., Kani, K., Hori, Y., & Maeda, S. (2004). Effect of pH on the
conformation of gellan chains in aqueous systems. Biophysical
Chemistry, 111(3), 223-227.
Huibers, P. D., & Shah, D. O. (1997). Evidence for synergism in nonionic
surfactant mixtures: enhancement of solubilization in water-in-oil
microemulsions. Langmuir, 13(21), 5762-5765.
Israelachvili, J. N. (2011). Intermolecular and surface forces. (3rd ed.).
Elsevier science.
Iurciuc, C. E., Savin, A., Lungu, C., Martin, P., & Popa, M. (2016). Gellan.
Food applications. Cellulose Chemistry and Technology, 50, 1-13.
Kalshetti, P. P., Rajendra, V. B., Dixit, D. N., & Parekh, P. P. (2012).
Hydrogels as a drug delivery system and applications: a
review. International Journal of Pharmacy and Pharmaceutical
Sciences, 4(1), 1-7.
Komaiko, J., & McClements, D, J. (2015). Food-grade nanoemulsion filled
hydrogels formed by spontaneous emulsification and gelation:
optical properties, rheology, and stability. Food Hydrocolloids, 46,
67-75.
Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a
review. Journal of Dispersion Science and Technology, 30(9),
1363-1383.
Latreille, B., & Paquin, P. (1990). Evaluation of emulsion stability by
centrifugation with conductivity measurements. Journal of Food
Science, 55(6), 1666-1668.
Liang, L., Line, V. L. S., Remondetto, G. E., & Subirade, M. (2010). In vitro
release of α-tocopherol from emulsion-loaded β-lactoglobulin
gels. International Dairy Journal, 20(3), 176-181.
Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Rheological analysis of
emulsion-filled gels based on high acyl gellan gum. Food
Hydrocolloids, 30(2), 672-680.
Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set
hydrogels as controlled delivery devices for nutraceutical
compounds. Food hydrocolloids, 23(7), 1647-1653.
Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and
microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365-
371.
Marianecci, C., Marzio, L. D., Rinaldi, F., Esposito, S., Carafa, M. (2013).
Niosoms. In I. F. Uchegbu, A. G. Schätzlein, W. P. Cheng, A.
Lalatsa (Eds.), Fundamentals of Pharmaceutical Nanoscience (pp.
67–68). New York, USA: Springer.
McClements, D, J. (2015). Food emulsions: principles, practices, and
techniques. (3rd ed.). Boca Raton. CRC Press. (Chapter 1).
McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and
functional performance. Soft Matter, 7(6), 2297-2316.
McClements, D. J. (2012). Nanoemulsions versus microemulsions:
terminology, differences, and similarities. Soft Matter, 8(6), 1719-
1729.
Moayedzadeh, S., Gunasekaran, S., & Madadlou, A. (2018). Spontaneous
emulsification of fish oil at a substantially low surfactant-to-oil
ratio: Emulsion characterization and filled hydrogel
formation. Food Hydrocolloids, 82, 11-18.
Morris, E. R., Nishinari, K., & Rinaudo, M. (2012). Gelation of gellan–a
review. Food Hydrocolloids, 28(2), 373-411.
Mun, S., Kim, Y. R., & McClements, D. J. (2015). Control of β-carotene
bioaccessibility using starch-based filled hydrogels. Food
Chemistry, 173, 454-461.
Murillo-Martínez, M. M., & Tecante, A. (2014). Preparation of the sodium
salt of high acyl gellan and characterization of its structure,
thermal and rheological behaviors. Carbohydrate Polymers, 108,
313-320.
Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids. (2nd
ed.). Elsevier. (Chapter 8).
Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilized
by both low molecular weight surfactants and colloidal particles:
The effect of surfactant type and concentration. Journal of Colloid
and Interface Science, 352(1), 128-135.
Poletto, F., Beck, R., Guterres, S., Polmann, A. (2011). Polymeric
nanocapsules: Concepts and applications. In R. Beck, S. Guterres,
A. Pohlmann (Eds.), Nanocosmetics and nanomedicines (pp. 57‒
58), New York, USA: Springer.
Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized
by model food-grade emulsifiers using high-pressure
homogenization: factors affecting particle size. Food
Hydrocolloids, 25(5), 1000-1008.
Singh, V. K., Pandey, P. M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A., &
Pal, K. (2016). Development of soy lecithin based novel selfassembled emulsion hydrogels. Journal of the mechanical
behavior of biomedical materials, 55, 250-263.
Sudhamani, S. R., Prasad, M. S., & Sankar, K. U. (2003). DSC and FTIR
studies on gellan and polyvinyl alcohol (PVA) blend films. Food
Hydrocolloids, 17(3), 245-250.
Tang, C. H., Chen, L., & Foegeding, E. A. (2011). Mechanical and waterholding properties and microstructures of soy protein isolate
emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and
transglutaminase: Influence of thermal treatments before and/or
after emulsification. Journal of Agricultural and Food
Chemistry, 59(8), 4071-4077.
Vilela, J. A. P., & da Cunha, R. L. (2016). High acyl gellan as an emulsion
stabilizer. Carbohydrate Polymers, 139, 115-124.
Wang, F., Wen, Y., & Bai, T. (2016). The composite hydrogels of polyvinyl
alcohol–gellan gum-Ca2+ with improved network structure and
mechanical property. Materials Science and Engineering: C, 69,
268-275.
Wang, L., Dong, J., Chen, J., Eastoe, J., & Li, X. (2009). Design and
optimization of a new self-nanoemulsifying drug delivery
system. Journal of Colloid and Interface Science, 330(2), 443-448.
Wang, Y., Li, D., Wang, L. J., & Adhikari, B. (2011). The effect of addition
of flaxseed gum on the emulsion properties of soybean protein
isolate (SPI). Journal of Food Engineering, 104(1), 56-62.
Yamamoto, F., & Cunha, R. L. (2007). Acid gelation of gellan: effect of final
pH and heat treatment conditions. Carbohydrate Polymers, 68(3),
517-527.