Extrusion Technology for Encapsulation: Principle, Method, and Application

Document Type : Review article

Authors

1 Department of Life Science, Sharda University, Greater Noida-201310, Uttar Pradesh, India

2 School of Agriculture, Indira Gandhi National Open University, New Delhi-110068

Abstract

The use of functional compounds to improve the nutritional value of foods is becoming increasingly popular across all sectors of the food industry. Even though many of these ingredients are unstable under normal conditions or have an unpleasant aftertaste, their use is restricted. Thus, it is necessary to use techniques that preserve the stability of these functional components, allow their use in a variety of food matrices, and improve their absorption in the gastrointestinal tract. Encapsulation technology is a new technique that has the potential to improve the stability of these functional ingredients while also allowing for their use in a variety of food matrices. Numerous methods have been used to microencapsulate active agents, including coacervation, co-crystallization, spray drying, lyophilization, and extrusion. Among these encapsulation techniques, extrusion encapsulation has proven to be the simplest, enabling the formation of resistant microcapsules while preserving the bioactivity of the encapsulated material. Extrusion-based encapsulation is advantageous economically and environmentally because it involves the formation of encapsulated material through direct dispersion of active components into wall material without the use of an organic solvent, as well as the benefits of lower energy and water consumption. This section discusses the basic concept, fundamental principles, and applications of extrusion encapsulation in the food industry. The review focuses primarily on the effects of extrusion encapsulation technologies on a variety of food ingredients, including oils, antioxidants, probiotics, and flavours.

Keywords

Main Subjects

References
Abbas S, Da Wei C, Hayat K, Xiaoming Z (2012) Ascorbic acid:
microencapsulation techniques and trends-a review. Food Rev Int
28(4):343-374. doi.org/10.1080/87559129.2011.635390
Aguiar J, Estevinho BN, Santos L (2016) Microencapsulation of natural
antioxidants for food application-The specific case of coffee
antioxidants-A review. Trends Food Sci Technol 58:21-39.
doi.org/10.1016/j.tifs.2016.10.012
Alvarez-Suarez JM, Giampieri F, Cordero M et al (2016) Activation of
AMPK/Nrf2 signaling by Manuka honey protects human dermal
fibroblasts against oxidative damage by improving antioxidant
response and mitochondrial function promoting wound healing. J
Funct Foods 25:38-49. doi.org/10.1016/j.jff.2016.05.008
Anbinder P S, Deladino L, Navarro A S et al (2011) Yerba Mate Extract
Rani et al. JFBE 7(1): 28-40,2024
38
Encapsulation with Alginate and Chitosan Systems: Interactions
between Active Compound Encapsulation Polymers. J Encap
Adsorp Sci 1(4):80–87. doi:10.4236/jeas.2011.14011
Beck E E (1972) Essential oil composition and method of preparing the same.
US Patent: 3,704,137.
Belščak-Cvitanović A, Bušić A, Barišić L, Vrsaljko D, Karlović S, Špoljarić
I, Vojvodić A, Mršić G, Komes D (2016) Emulsion templated
microencapsulation of dandelion (Taraxacum officinale L.)
polyphenols and β-carotene by ionotropic gelation of alginate and
pectin. Food hydrocoll 57:139-152.
doi.org/10.1016/j.foodhyd.2016.01.020
Benczedi D, Bouquerand PE (2001) Process for the preparation of granules
for the controlled release of volatiles compounds. PCT WO
01/17372 A1, Firmenich SA, Geneva.
Bhat AR, Irorere VU, Bartlett T, Hill D, Kedia G, Charalampopoulos D,
Nualkaekul S, Radecka I (2015) Improving survival of probiotic
bacteria using bacterial poly-γ-glutamic acid. Int J Food
Microbiol 196:24-31. doi.org/10.1016/j.ijfoodmicro.2014.11.031
Carocho M, Morales P, Ferreira ICFR (2018) Antioxidants: reviewing the
chemistry, food applications, legislation and role as preservatives.
Trends Food Sci Technol 71:107-120.
doi.org/10.1016/j.tifs.2017.11.008
Castro N, Durrieu V, Raynaud C, Rouilly A, Rigal L, Quellet C (2016) Melt
extrusion encapsulation of flavors: A review. Polym
Rev 56(1):137-186. doi.org/10.1080/15583724.2015.1091776
Chaikham P (2015) Stability of probiotics encapsulated with Thai herbal
extracts in fruit juices and yoghurt during refrigerated storage.
Food Biosci 12:61-66. doi.org/10.1016/j.fbio.2015.07.006
Chang D, Abbas S, Hayat K, Xia S, Zhang X, Xie M, Kim JM (2010)
Encapsulation of ascorbic acid in amorphous maltodextrin
employing extrusion as affected by matrix/core ratio and water
content. Int J Food Sci Technol (45):1895-1901.
doi.org/10.1111/j.1365-2621.2010.02348.x
Chang D, Hayat K, Abbas S, Zhang X (2019) Ascorbic acid encapsulation in
a glassy carbohydrate matrix via hot melt extrusion: Preparation
and characterization. Food Sci Technol 39(3):660-666.
doi.org/10.1590/fst.02918
Chawda PJ, Shi J, Xue S, Quek SY (2017) Coencapsulation of bioactives for
food applications. Food Qual Safe 1(4):302-309.
doi.org/10.1093/fqsafe/fyx028
Chew SC, Nyam KL (2016) Microencapsulation of kenaf seed oil by coextrusion
technology. J Food Eng 175:43-50.
doi.org/10.1016/j.jfoodeng.2015.12.002
Crouzet J, Sadafian BD, Chouvel H (1984) Retention des composes volatiles
au cours de la cuisson-extrusion. In: Zeuthen, P (ed) Thermal
processing and quality of foods. London: Elsevier Applied
Science Publishers, pp. 212-216.
da Silva Freitas D, Abrahão-Neto J (2010) Biochemical and biophysical
characterization of lysozyme modified by PEGylation. Int J
Pharm 392(1-2):111-117.
doi.org/10.1016/j.ijpharm.2010.03.036.
de Moura SC, Berling CL, Germer SP, Alvim ID, Hubinger MD (2018)
Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces
by ionic gelation: Pigment stability during storage of
microparticles. Food Chem (241):317-327.
doi.org/10.1016/j.foodchem.2017.08.095
Desai KGH, Jin Park H (2005) Recent developments in microencapsulation
of food ingredients. Dry Technol 23(7):1361-1394.
doi.org/10.1081/DRT-200063478
Dezarn TJ (1995) Food ingredient encapsulation. In: Risch SJ, Reineccius
GA (eds) American Chemical Society, Washington DC, pp 75-
86.
Doherty SB, Auty MA, Stanton C, Ross RP, Fitzgerald GF, Brodkorb A
(2012) Application of whey protein micro-bead coatings for
enhanced strength and probiotic protection during fruit juice
storage and gastric incubation. J Microencapsul 29(8):713-728.
doi.org/10.3109/02652048.2011.638994
Dolçà C, Ferrándiz M, Capablanca L, Franco E, Mira E, López F, García D
(2015) Microencapsulation of rosemary essential oil by coextrusion/
gelling using alginate as a wall material. J Encapsul
Adsorpt Sci 5(3):121-130. doi.org/10.4236/jeas.2015.53010
Fang Z, Bhandari B (2010) Encapsulation of polyphenols–a review. Trends
Food Sci Tech 21(10):510-523.
doi.org/10.1016/j.tifs.2010.08.003
Feizollahi E, Hadian Z, Honarvar Z (2018) Food fortification with omega-3
fatty acids; microencapsulation as an addition method. Curr Nutr
Food Sci 14(2):90-103.
doi.org/10.2174/1573401313666170728151350
Fratianni F, Cardinale F, Russo I, Iuliano C, Tremonte P, Coppola R, Nazzaro
F (2014) Ability of synbiotic encapsulated Saccharomyces
cerevisiae boulardii to grow in berry juice and to survive under
simulated gastrointestinal conditions. J Microencapsul 31:299-
305. doi.org/10.3109/02652048.2013.871361
Gaanappriya M, Guhankumar P, Kiruththica V, Santhiya N, Anita S (2013)
Probiotication of fruit juices by Lactobacillus acidophilus. Int J
Adv Biotechnol Res 4:72-77.
Gandomi H, Abbaszadeh S, Misaghi A, Bokaie S, Noori N (2016) Effect of
chitosan-alginate encapsulation with inulin on survival of
Lactobacillus rhamnosus GG during apple juice storage and under
simulated gastrointestinal conditions. LWT-Food Sci Technol
69:365-71. doi.org/10.1016/j.lwt.2016.01.064
Gangurde AB, Sav AK, Javeer SD, Moravkar KK, Pawar JN, Amin PD
(2015) Modified extrusion-spheronization as a technique of
microencapsulation for stabilization of choline bitartrate using
hydrogenated soya bean oil. Int J Pharm Investig 5(4): 275.
doi:10.4103/2230-973X.167696
Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from
microencapsulation to release into the gut. Pharmaceutics
4(1):149-163. doi.org/10.3390/pharmaceutics4010149
Gómez-Mascaraque, L G, Martínez-Sanz M, Fabra M J, López-Rubio A
(2019) Development of gelatin-coated ι-carrageenan hydrogel
capsules by electric field-aided extrusion. Impact of phenolic
compounds on their performance. Food Hydrocoll (90):523-533.
doi.org/10.1016/j.foodhyd.2018.12.017
Gouin S (2004) Microencapsulation: industrial appraisal of existing
technologies and trends. Trends Food Sci Tech 15(7-8): 330-347.
doi.org/10.1016/j.tifs.2003.10.005
Gunning YM, Gunning PA, Kemsley EK, Parker R, Ring SG, Wilson RH,
Blake A (1999) Factors affecting the release of flavor
encapsulated in carbohydrate matrixes. J Agric Food Chem
47(12):5198-5205. doi.org/10.1021/jf990039r
Jackson LS, Lee K (1991) Microencapsulation and the food industry. LWTFood
Sci Technol 24(4):289-297.
Jiménez-Pranteda ML, Pérez-Davó A, Monteoliva-Sánchez M, Ramos-
Cormenzana A, Aguilera M (2015) Food omics validation:
towards understanding key features for gut microbiota, probiotics
and human health. Food Analyt Method 8:272–289.
doi.org/10.1007/s12161-014-9923-6
Jones D M (1988) Controlled particle size and release properties: secondary
processing techniques. In: Risch SJ and Reineccius G A (eds)
Flavor Encapsulation. ACS Symposium Series No. 370,
American Chemical Society, Washington DC, pp 158-176.
doi.org/10.1021/bk-1988-0370.ch017
Jun-xia X, Hai-yan Y, Jian Y (2011) Microencapsulation of sweet orange oil
by complex coacervation with soybean protein isolate/gum
Arabic. Food Chem 125(4):1267-1272.
doi.org/10.1016/j.foodchem.2010.10.063
Kollengode AN, Hanna MA (1997) Cyclodextrin complexed flavors
retention in extruded starches. J Food Sci 62(5): 1057-1060.
doi.org/10.1111/j.1365-2621.1997.tb15037.x
Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation te
chniques of probiotics for yoghurt. Int Dairy J 13:3-13. doi:10
.1016/s0958-6946(02)00155-3
Krasaekoopt W, Kitsawad K (2010) Sensory characteristics and consumer
acceptance of fruit juice containing probiotics beads in Thailand.
Aust J Technol 14: 33-38
Li M, Rouaud O, Poncelet D (2008) Microencapsulation by solvent
evaporation: State of the art for process engineering approaches.
Int J Pharm 363(1-2):26-39.
Rani et al. JFBE 7(1): 28-40,2024
39
doi.org/10.1016/j.ijpharm.2008.07.018
Li YO, Yadava D, Lo KL, Diosady LL, Wesley AS (2011) Feasibility and
optimization study of using cold-forming extrusion process for
agglomerating and microencapsulating ferrous fumarate for salt
double fortification with iodine and iron. J
Microencapsul 28(7):639-649.
doi.org/10.3109/02652048.2011.604434
Lucía C, Marcela F, Ainhoa L (2017) Encapsulation of Almond Essential Oil
by Co-Extrusion/Gelling Using Chitosan as Wall Material. J
Encapsul Adsorpt Sci 7(01):67. doi.org/10.4236/jeas.2017.71004
Macías-Cortés E, Gallegos-Infante JA, Rocha-Guzmán NE, Moreno-Jiménez
MR, Medina-Torres L, González-Laredo RF (2020)
Microencapsulation of phenolic compounds: technologies and
novel polymers. Rev Mex Ing Quim 19(2):491-521.
doi.org/10.24275/rmiq/Alim642
Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and
controlled release–a review. Int. J. Food Sci Tech 41(1):1-21.
doi.org/10.1111/j.1365-2621.2005.00980.x
Majamaa H, Isolauri E (1997) Probiotics: a novel approach in the
management of food allergy. J Allergy Clin Immunol 99(2):179-
185. doi.org/10.1016/S0091-6749(97)70093-9
Malchow HA (1997) Crohn's disease and Escherichia coli: a new approach
in therapy to maintain remission of colonic Crohn's disease? J
Clin Gastroenterol 25(4):653-658.
Manojlovic V, Rajic N, Djonlagic J, Obradovic B, Nedovic V, Bugarski B
(2008) Application of electrostatic extrusion-flavour
encapsulation and controlled release. Sensors 8(3):1488-1496.
doi.org/10.3390/s8031488
Maresca D, De Prisco A, La Storia A, Cirillo T, Esposito F, Mauriello G
(2016). Microencapsulation of nisin in alginate beads by vibrating
technology: Preliminary investigation. LWT-Food Sci
Technol 66:436-443. doi.org/10.1016/j.lwt.2015.10.062
Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015)
Microencapsulation of bacteria: A review of different
technologies and their impact on the probiotic effects. Innov Food
Sci Emerg Technol 27:15-25. doi.org/10.1016/j.ifset.2014.09.010
Mathews S (2017) Microencapsulation of probiotics by calcium alginate and
gelatin and evaluation of its survival in simulated human gastrointestinal
condition. Int J Curr Microbiol App Sci 6 (4):2080-
2087. doi.org/10.20546/ijcmas.2017.604.245
Maurya VK, Aggarwal M (2017) Enhancing bio-availability of vitamin D b
y nano-engineered based delivery systems-An overview. In
t J Curr Microbiol Appl Sci 6(7):340-353. doi:10.20546/ijcma
s.2017.607.040
Maurya VK, Aggarwal M, Ranjan V, Gothandam KM (2020b) Improving bi
oavailability of vitamin A in food by encapsulation: An updat
e. In Nanoscience in Medicine. Springer, Cham, pp 117-145.
Maurya VK, Bashir K, Aggarwal M (2020a) Vitamin D microencapsulation
and fortification: Trends and technologies. J Steroid Biochem
196:105489. doi:10.1016/j.jsbmb.2019.105489
McClements DJ (2017) Designing biopolymer microgels to encapsulate,
protect and deliver bioactive components: Physicochemical
aspects. Adv. Colloid Interface Sci (240):31-59.
doi.org/10.1016/j.cis.2016.12.005
Miller DH, Mutka JR (1985) Preparation of solid essential oil flavor
composition. US Patent: 4,499,122.
Miller DH, Mutka JR (1986) Solid essential oil composition. US Patent:
4,610,890.
Mirzaei H, Pourjafar H, Homayouni A (2012) Effect of calcium alginate and
resistant starch microencapsulation on the survival rate of
Lactobacillus acidophilus La5 and sensory properties in Iranian
white brined cheese. Food Chem 132(4):1966-1970.
doi.org/10.1016/j.foodchem.2011.12.033
Moschona A, Liakopoulou-Kyriakides M (2018) Encapsulation of biological
active phenolic compounds extracted from wine wastes in
alginate-chitosan microbeads. J Microencapsul 35(3):229-240.
doi.org/10.1080/02652048.2018.1462415
Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An
overview of encapsulation technologies for food
applications. Procedia Food Sci 1:1806-1815.
doi.org/10.1016/j.profoo.2011.09.265
Nualkaekul S, Cook MT, Khutoryanskiy VV, Charalampopoulos D (2013)
Influence of encapsulation and coating materials on the survival
of Lactobacillus plantarum and Bifidobacterium longum in fruit
juices. Food Res Int 53:304-311.
doi.org/10.1016/j.foodres.2013.04.019
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E (2019) A review of
microencapsulation methods for food antioxidants: Principles,
advantages, drawbacks and applications. Food chem (272):494-
506. doi.org/10.1016/j.foodchem.2018.07.205
Pablo SA, Lorena D, Alba S N, Javier I A, Miriam NM (2011) Yerba mate
extract encapsulation with alginate and chitosan systems:
interactions between active compound encapsulation polymers. J
Encapsul Adsorpt Sci 1(4):80-87.
doi.org/10.4236/jeas.2011.14011
Pasukamonset P, Kwon O, Adisakwattana S (2016). Alginate-based
encapsulation of polyphenols from Clitoria ternatea petal flower
extract enhances stability and biological activity under simulated
gastrointestinal conditions. Food hydrocoll 61:772-779.
doi.org/10.1016/j.foodhyd.2016.06.039
Paulo F, Santos L (2017) Design of experiments for microencapsulation
applications: A review. Mater Sci Eng C 77:1327-1340.
doi.org/10.1016/j.msec.2017.03.219
Pei J, Yue T, Yuan Y (2014) Control of Alicyclobacillus acidoterrestris in
fruit juices by a newly discovered bacteriocin. World J Microb
Biot 30:855-63. doi.org/10.1007/s11274-013-1491-1
Petraitytė S, Šipailienė A (2019) Enhancing encapsulation efficiency of
alginate capsules containing lactic acid bacteria by using different
divalent cross-linkers sources. LWT- Food Sci Technol 110:307-
315. doi.org/10.1016/j.lwt.2019.01.065
Phoem AN, Chanthachum S, Voravuthikunchai SP (2015) Applications of
microencapsulated Bifidobacterium longum with Eleutherine
americana in fresh milk tofu and pineapple juice. Nutrients
7(4):2469-2484. doi.org/10.3390/nu7042469
Pierucci APT, Andrade LR, Baptista EB, Volpato NM, Rocha-Leão MHM
(2006) New microencapsulation system for ascorbic acid using
pea protein concentrate as coat protector. J Microencapsul
23(6):654-662. doi.org/10.1080/02652040600776523
Poshadri A, Aparna K (2010) Microencapsulation technology: a review. J
Res Angrau 38(1):86-102. oar.icrisat.org/id/eprint/6375.
Pradeep HN, Nayak CA (2019) Enhanced stability of C-phycocyanin
colorant by extrusion encapsulation. J Food Sci Technol
56(10):4526-4534. doi.org/10.1007/s13197-019-03955-8
Rathore S, Desai PM, Liew CV, Chan LW, Heng PWS (2013)
Microencapsulation of microbial cells. J Food Eng 116(2):369-
381. doi.org/10.1016/j.jfoodeng.2012.12.022
Reineccius G A, Coulter ST (1969) Flavor retention during drying. J Dairy
Sci 52(8): 1219-1223. doi.org/10.3168/jds.S0022-
0302(69)86728-7
Reineccius GA (1989) Flavor encapsulation. Food Rev Int 5(2):147-176.
doi.org/10.1080/87559128909540848
Rijo P, Falé P L, Serralheiro ML, Simões MF, Gomes A, Reis C (2014).
Optimization of medicinal plant extraction methods and their
encapsulation through extrusion technology. Measurement
58:249-255. doi.org/10.1016/j.measurement.2014.08.045
Rodrigues D, Sousa S, Gomes AM, Pintado MM, Silva JP, Costa P, Amaral
MH, Rocha-Santos T, Freitas AC (2012) Storage stability of
Lactobacillus paracasei as free cells or encapsulated in alginatebased
microcapsules in low pH fruit juices. Food Bioproc Tech
5(7):2748-2757. doi.org/10.1007/s11947-011-0581-z
Sadafian A, Crouzet J (1988) Aroma compounds retention during extrusion
cooking. In: Charalambous, G (ed) Frontiers of flavour. Westport:
Elsevier Science Publisher, pp 623-637.
Saleeb FZ, Arora VK (1999). Method of preparing glass stabilized material.
US Patent: 5,972,395.
Schell, D., & Beermann, C. (2014). Fluidized bed microencapsulation of
Lactobacillus reuteri with sweet whey and shellac for improved
acid resistance and in-vitro gastro-intestinal survival. Food
Research International, 62, 308-314.
Schultz TH, Dimick KP, Makower N (1956) Incorporation of natural fruit
Rani et al. JFBE 7(1): 28-40,2024
40
flavors into fruit juice powders. Food Technol. 10 (1):57.
Serp D, Mueller M, Stockar UV, Marison IW (2002) Low-Temperature
Electron Microscopy for the Study of Polysaccharide
Ultrastructures in Hydrogels. II. Effect of Temperature on the
Structure of Ca2+-Alginate Beads. Biotechnol Bioeng (79):253-
259. doi.org/10.1002/bit.10287
Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food
Sci Nutr 33(6):501-547. doi.org/10.1080/10408399309527645
Shinde T, Sun-Waterhouse D, Brooks J (2014) Co-extrusion encapsulation
of probiotic lactobacillus acidophilus alone or together with apple
skin polyphenols: an aqueous and value-added delivery system
using alginate. Food and bioproc tech 7(6):1581-1596.
doi.org/10.1007/s11947-013-1129-1
Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food
applications: development and characterization. Food Bioproc
Tech 5(3):854-867. doi.org/10.1007/s11947-011-0683-7
Silva MP, Tulini FL, Ribas MM, Penning M, Fávaro-Trindade CS, Poncelet
D (2016) Microcapsules loaded with the probiotic Lactobacillus
paracasei BGP-1 produced by co-extrusion technology using
alginate/shellac as wall material: characterization and evaluation
of drying processes. Food Res Int 89:582-590.
doi.org/10.1016/j.foodres.2016.09.008
Silva PT, Fries LL, Menezes CR, Holkem AT, Schwan CL, Wigmann ÉF,
Bastos JD, Silva CD (2014) Microencapsulation: concepts,
mechanisms, methods and some applications in food technology.
Cienc Rural 44(7):1304-11. doi.org/10.1590/0103-
8478cr20130971
Speranza B, Petruzzi L, Bevilacqua A, Gallo M, Campaniello D, Sinigaglia
M, Corbo MR (2017) Encapsulation of active compounds in fruit
and vegetable juice processing: current state and perspectives. J
Food Sci 82(6):1291-1301. doi.org/10.1111/1750-3841.13727
Sriamornsak P, Kennedy RA (2007) Effect of drug solubility on release
behavior of calcium polysaccharide gel-coated pellets. Eur J
Pharm Sci 32(3):231-239. doi.org/10.1016/j.ejps.2007.08.001
Suave J, Dall'Agnol EC, Pezzin APT, Silva DAK, Meier MM, Soldi, V
(2006) Microencapsulation: Innovation in different areas. Health
Environ J 7 (2):12-20.
Sun-Waterhouse D, Penin-Peyta L, Wadhwa SS, Waterhouse GI (2012)
Storage stability of phenolic-fortified avocado oil encapsulated
using different polymer formulations and co-extrusion
technology. Food Bioproc Tech 5(8):3090-3102.
doi.org/10.1007/s11947-011-0591-x
Sun-Waterhouse D, Wang W, Waterhouse GI (2014) Canola oil encapsulated
by alginate and its combinations with starches of low and high
amylose content: effect of quercetin on oil stability. Food Bioproc
Tech 7(8):2159-2177. doi.org/10.1007/s11947-013-1163-z
Sun-Waterhouse D, Zhou J, Miskelly GM, Wibisono R, Wadhwa SS (2011)
Stability of encapsulated olive oil in the presence of caffeic acid.
Food Chem 126(3):1049-1056.
doi.org/10.1016/j.foodchem.2010.11.124
Swisher HE (1957) Solid essential oil-containing components. U.S. Patent
2,809,895.
Tapia-Hernández JA, Torres-Chávez PI, Ramírez-Wong B, Rascón-Chu A,
Plascencia-Jatomea M, Barreras-Urbina CG, Rangel-Vázquez
NA, Rodríguez-Félix F (2015) Micro-and nanoparticles by
electrospray: advances and applications in foods. J Agric Food
Chem 63(19):4699-4707. doi.org/10.1021/acs.jafc.5b01403
Tootoonchi P, Hesari J, Moradi M, Mehrnoosh F (2015) Survival of
encapsulated Lactobacillus acidophilus LA5 and Lactobacillus
casei 431 encapsulated in orange juice stored in refrigerator
temperature. Intl J Biol Pharm Appl Sci 4(8):268-276.
Tyagi VV, Kaushik SC, Tyagi SK, Akiyama T (2011) Development of phase
change materials based microencapsulated technology for
buildings: a review. Renew Sust Energ Rev 15(2):1373-1391.
doi.org/10.1016/j.rser.2010.10.006
Valentinotti S, Armanet L, Porret J (2006) Encapsulated polyunsaturated
fatty acids. US Patent Application: 11/313,006.
Van Lengerich BH, Leung L, Robie SC, Kang Y, Lakkis J, Jarl TM (2004)
Encapsulation of sensitive components using pre-emulsification.
US2004/0017017.
Van Lengerich BH, Walther G, Van Auken B (2007) Encapsulation of readily
oxidizable components. US2007/0098853.
Wen P, Zong MH, Linhardt RJ, Feng K, Wu H (2017) Electrospinning: A
novel nano-encapsulation approach for bioactive
compounds. Trends Food Sci Technol 70:56-68.
doi.org/10.1016/j.tifs.2017.10.009
Whelehan M, Marison IW (2011) Microencapsulation using vibrating
technology. J Microencapsul 28(8):669-688.
https://doi.org/10.3109/02652048.2011.586068
Whitcombe MJ, Parker R, Ring SG (2005) Oxygen solubility and
permeability of carbohydrates. Carbohydr Res 340(8):1523-1527.
doi.org/10.1016/j.carres.2005.04.001
Yılmaz G, Jongboom RO, Feil H, Hennink WE (2001) Encapsulation of
sunflower oil in starch matrices via extrusion: effect of the
interfacial properties and processing conditions on the formation
of dispersed phase morphologies. Carbohydr Polym 45(4):403-
410. doi.org/10.1016/S0144-8617(00)00264-2
Ying D, Ong YL, Cheng LJ, Sanguansri L, Shen Z, Augustin MA (2016)
Compressible extruded granules containing microencapsulated oil
powders. Powder Technol (291):276-283.
doi.org/10.1016/j.powtec.2015.12.042
Yuliani S, Torley PJ, D’Arcy B, Nicholson T, Bhandari B (2006) Extrusion
of mixtures of starch and d-limonene encapsulated with β-
cyclodextrin: Flavour retention and physical properties. Food Res
Int 39(3):318-331. doi.org/10.1016/j.foodres.2005.08.005
Zeeb B, Saberi A H, Weiss J, McClements D J (2015) Retention and release
of oil-in-water emulsions from filled hydrogel beads composed of
calcium alginate: impact of emulsifier type and pH. Soft Matter
11(11):2228-2236. doi.org/10.1039/C4SM02791D
Zhu F (2017) Encapsulation and delivery of food ingredients using starch
based systems. Food Chem 229:542-552.
doi.org/10.1016/j.foodchem.2017.02.101
Zuidam NJ, Shimoni E (2010) Overview of Microencapsulates for Use in
Food Products or Processes and Methods to Make Them. In:
Zuidam N, Nedovic V (eds) Encapsulation Technologies for
Active Food Ingredients and Food Processing. Springer, New
York, NY, pp 3-29