Ajala, A. W., & Ghavami, A. (2020). Evaluation of the effectiveness of cereal bran extract for sunflower oil stability during frying. International Journal of Food Studies, 9, SI52–SI61https://doi.org/10.7455/ijfs/9.SI.2020.a4.
AOCS (2017). Official Methods and Recommended Practices of the American Oil Chemists' Society (7th ed.) Champaign, IL: American Oil Chemists' Society.
Arslan, F. N., Şapçı, A. N., Duru, F., & Kara, H. (2017). A study on the monitoring of frying performance and oxidative stability of cottonseed and palm oil blends in comparison with original oils. International Journal of Food Properties, 20 (3), 704–717. https://doi.org/10.1080/10942912.2016.1177544.
Ayorinde, Jeje, O., Okoronkwo, A. E., & Ajayi, O. O. (2019). Effect of bleaching on the physico-chemical properties of two selected vegetable oils using locally sourced materials as adsorbent. Current Journal of Applied Science and Technology, 36 (4): 1–8. https://doi.org/10.9734/cjast/2019/v36i430244.
Barrera-Arellano, D., Badan-Ribeiro, A. P., & Serna-Saldivar, S. O. (2018). Corn oil: Composition, processing, and utilization. In Corn: Chemistry and Technology (3rd ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811971-6.00021-8.
Codex Alimentarium Commission. (2017). Standard for fish oils. Codex Standard 329, 1–6. Codex Standard for Fish Oils CXS_329e_Nov 2017.
De Boer, A. A., Ismail, A., Marshall, K., Bannenberg, G., Yan, K. L., & Rowe, W. J. (2018). Examination of marine and vegetable oil oxidation data from a multi-year, third-party database. Food Chemistry, 254, 249–255. https://doi.org/10.1016/j.foodchem.2018.01.180.
Hashem, H., Almoselhy, R. I. M., & Magdy, A. (2020). Rapid authentication of extra virgin olive oil using UV and FTIR spectroscopy. Middle East Journal of Applied Sciences, 10 (2), 263–271. https://doi.org/10.36632/mejas/2020.10.2.25.
Hojjati, M., Lipan, L., & Carbonell-Barrachina, Á. A. (2016). Effect of roasting on physicochemical properties of wild almonds (Amygdalus scoparia). Journal of the American Oil Chemists’ Society, 93 (9), 1211–1220. https://doi.org/10.1007/s11746-016-2868-8.
Hwang, H. S., Winkler-Moser, J. K., Kim, Y., & Liu, S. X. (2019). Antioxidant activity of spent coffee ground extracts toward soybean oil and fish oil. European Journal of Lipid Science and Technology, 121(4), 1–12. https://doi.org/10.1002/ejlt.201800372.
Jeon, Y. H., Son, Y. J., Kim, S. H., Yun, E. Y., Kang, H. J., & Hwang, I. K. (2016). Physicochemical properties and oxidative stabilities of mealworm (Tenebrio molitor) oils under different roasting conditions. Food Science and Biotechnology, 25(1), 105–110. https://doi.org/10.1007/s10068-016-0015-9.
Jung, M. Y., & Choi, D. S. (2016). Protective effect of gallic acid on the thermal oxidation of corn and soybean oils during high-temperature heating. Food Science and Biotechnology, 25(6), 1577–1582. https://doi.org/10.1007/s10068-016-0243-z.
Kasprzak, M., Rudzińska, M., Przybylski, R., Kmiecik, D., Siger, A., & Olejnik, A. (2020). The degradation of bioactive compounds and formation of their oxidation derivatives in refined rapeseed oil during heating in model system. LWT, 123. https://doi.org/10.1016/j.lwt.2020.109078.
Keshavarz, S., & Moslehishad, M. (2020). Advantages of thermal stability of virgin olive oil over canola and frying oil. Journal of Food and Bioprocess Engineering, 3 (1), 41–46.
Kim, C. H., Jo, S., Kim, S. H., Kim, M. J., & Lee, J. H. (2021). Distribution of aldehydes compared to other oxidation parameters in oil matrices during autoxidation. Food Science and Biotechnology, 30(9), 1195–1203. https://doi.org/10.1007/s10068-021-00956-2.
Kim, Y.H., Kim, M.J., Choi, Y. & Lee J.H. (2022). Physicochemical properties and oxidative stability of corn oil in infrared‐based and hot air‐circulating cookers. Food Science and Biotechnology, 31. https://doi.org/10.1007/s10068-022-01127-7.
Kmiecik, D., Gramza-Michałowska, A., & Korczak, J. (2018). Anti-polymerization activity of tea and fruits extracts during rapeseed oil heating. Food Chemistry, 239, 858–864. https://doi.org/10.1016/j.foodchem.2017.07.025.
Liu, S., Zhong, Y., Shen, M., Yan, Y., Yu, Y., Xie, J., Nie, S., & Xie, M. (2021). Changes in fatty acids and formation of carbonyl compounds during frying of rice cakes and hairtails. Journal of Food Composition and Analysis, 101(235), 103937. https://doi.org/10.1016/j.jfca.2021.103937Manzoor, S., Masoodi, F. A., Rashid, R., & Dar, M. M. (2022). Effect of apple pomace-based antioxidants on the stability of mustard oil during deep frying of French fries. LWT, 163, 113576. https://doi.org/10.1016/j.lwt.2022.113576.
Mba, O. I., Dumont, M. J., & Ngadi, M. (2016). Deterioration kinetics of crude palm oil, canola oil and blend during repeated deep-fat frying. Journal of the American Oil Chemists’ Society, 93 (9), 1243–1253. https://doi.org/10.1007/s11746-016-2872-z.
Melo, E., Michels, F., Arakaki, D., Lima, N., Gonçalves, D., Cavalheiro, L., Oliveira, L., Caires, A., Hiane, P., & Nascimento, V. (2019). First study on the oxidative stability and elemental analysis of babassu (Attalea speciosa) edible oil produced in Brazil using a domestic extraction machine. Molecules, 24(23). https://doi.org/10.3390/molecules24234235.
Mikheev, Y. A., & Ershov, Y. A. (2019). Mechanisms of the photodissociation of aminoazobenzene rydimers into monomers, according to data from ultrafast laser-probing spectroscopy. Russian Journal of Physical Chemistry A, 93 (7), 1411–1416. https://doi.org/10.1134/S0036024419070185.
Nagy, K., Kerrihard, A. L., Beggio, M., Craft, B. D., & Pegg, R. B. (2016). Modeling the impact of residual fat-soluble vitamin (FSV) contents on the oxidative stability of commercially refined vegetable oils. Food Research International, 84, 26–32. https://doi.org/10.1016/j.foodres.2016.03.018.
Padovan, A., Moret, S., Bortolomeazzi, R., Moret, E., Conchione, C., Conte, L. S., & Brühl, L. (2020). Formation of Alkylbenzenes and Tocochromanols Degradation in Sunflower Oil and in Fried Potatoes during Deep-Frying and Pan-Frying. European Journal of Lipid Science and Technology, 122 (5), 1–7. https://doi.org/10.1002/ejlt.201900296.
Patra, B. R., Borugadda, V. B., & Dalai, A. K. (2022). Microwave-assisted extraction of sea buckthorn pomace and seed extracts as a proactive antioxidant to stabilize edible oils. Bioresource Technology Reports, 17, 100970. https://doi.org/10.1016/j.biteb.2022.100970.
Patterson, H.B.W. (2011). Quality and Control. In Hydrogenation of Fats and Oils (2nd Edition), Theory and Practice. AOCS Press. Urbana, IL, pp: 329-350. https://doi.org/10.1016/B978-1-893997-93-6.50018-X.
Prabsangob, N. and Benjakul, S (2019). Effect of tea catechin derivatives on the stability of soybean oil/tea seed oil blend and oxidative stability of fried fish crackers during storage. Food Science and Biotechnology, 28, 679-689. https://doi.org/ 10.1007/s10068-018-0515-x
Rincón, L. A., Cadavid, J. G., & Orjuela, A. (2019). Used cooking oils as potential oleochemical feedstock for urban biorefineries – Study case in Bogota, Colombia. Waste Management, 88, 200–210. https://doi.org/10.1016/j.wasman.2019.03.042.
Sahasrabudhe, S. N., Staton, J. A., & Farkas, B. E. (2019). Effect of frying oil degradation on surface tension and wettability. LWT, 99, 519–524. https://doi.org/10.1016/j.lwt.2018.10.026.
Sarwar, A., Vunguturi, S., & Aneesa, F. (2016). A Study on Smoke Point and Peroxide Values of Different Widely Used Edible Oils. International Journal of Engineering Technology Science and Research, 3 (5), 2394–3386.
Silva, M.A., Albuquerque, T.G., Alves, R.C., Oliveira, M. B. P. P., & Costa, H. S. (2019). Melon seeds oil, fruit seeds oil and vegetable oils: a comparison study. Annals of Medicine, 51, S166-S167. https://doi.org/10.1080/07853890.2018.1561973.
Shanker, N., & Debnath, S. (2019). Impact of purslane (Portulaca oleracea L.) leaves extract to enhance the antioxidant potential of edible oils during heating. Journal of Oleo Science, 68(4), 321–328. https://doi.org/10.5650/jos.ess18126.
Song, J. H., Kim, M. J., Kim, Y. J., & Lee, J. H. (2017). Monitoring changes in acid value, total polar material, and antioxidant capacity of oils used for frying chicken. Food Chemistry, 220, 306–312.
Rezaei et al. JFBE 7(2): 7-14,2024
14
https://doi.org/10.1016/j.foodchem.2016.09.174.
Strieder, M. M., Pinheiro, C. P., Borba, V. S., Pohndorf, R. S., Cadaval, T. R. S., & Pinto, L. A. A. (2017). Bleaching optimization and winterization step evaluation in the refinement of rice bran oil. Separation and Purification Technology, 175, 72–78. https://doi.org/10.1016/j.seppur.2016.11.026.
Tarmizi, A. H., Hishamuddin, E., & Abd Razak, R. A. (2019). Impartial assessment of oil degradation through partitioning of polar compounds in vegetable oils under simulated frying practice of fast-food restaurants. Food Control, 96, 445–455. https://doi.org/10.1016/j.foodcont.2018.10.010.
Veronezi, C. M., & Jorge, N. (2018). Effect of Carica papaya and Cucumis melo seed oils on the soybean oil stability. Food Science and Biotechnology, 27(4), 1031–1040. https://doi.org/10.1007/s10068-018-0325-1.
Wang, W., Wang, H. L., Xiao, X. Z., & Xu, X. Q. (2019). Chemical composition analysis of seed oil from five wild almond species in China as potential edible oil resource for the future. South African Journal of Botany, 121, 274–28. https://doi.org/10.1016/j.sajb.2018.11.009.
Wang, D., Chen, X., Wang, Q., Meng, Y., Wang, D., & Wang, X. (2020). Influence of the essential oil of Mentha spicata cv. Henanshixiang on sunflower oil during the deep-frying of Chinese Maye. LWT, 122, 109020. https://doi.org/10.1016/j.lwt.2020.109020.
Xu, L., Wu, G., Zhang, Y., Wang, Q., Zhao, C., Zhang, H., Jin, Q., & Wang, X. (2020). Evaluation of glycerol core aldehydes formation in edible oils under restaurant deep frying. Food Research International, 137, 109696. https://doi.org/10.1016/j.foodres.2020.109696.
Yahya, S., Razali, F. H., & Harun, F. W. (2019). Physicochemical properties of refined palm cooking oil and used palm cooking oil. Materials Today: Proceedings, 19, 1166–1172. https://doi.org/10.1016/j.matpr.2019.11.010.
Zhou, X., Chen, Y., Yang, Q., Liu, Y., Wu, Y., Lu, R., & Ni, Z. (2019). Optimization of total polar compounds quantification in frying oils by low-field nuclear magnetic resonance. Analytical Sciences, 35 (12), 1380–1384. https://doi.org/10.2116/analsci.19P268.
Zamanhuri, Sh. A., Hanafi, F., & Sapawe, N. (2020). Characterization and physicochemical properties of biodiesel produced from waste cooking oil (WCO) using magnetic alumina-ferric oxide nanoparticles catalyst. Materials Today: Proceedings, 31, A122–A125. https://doi.org/10.1016/j.matpr.2021.01.035.