Polymethacrylate coated electrospun chitosan/PEO nanofibers loaded with thyme essential oil: a newfound potential for antimicrobial food packaging

Document Type : Original research

Authors

Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering & Technology, Faculty of Agricultural Engineering & Technology, University of Tehran, P.O. Box 4111, Karaj, 31587-77871, Iran

Abstract

Development of antimicrobial nanofibers by the electrospinning process is one of the most emerging trends in food bio-packaging systems. In this study, the blend of chitosan (CS) and polyethylene oxide (PEO) was employed to fabricate electrospun nanofibrous mats. Thyme essential oil (TEO) was embedded into the electrospun CS/PEO mats at concentrations of 0.5%, 1%, and 1.5% to create nanofibers with antibacterial properties.  Adding functional groups to the surface of the CS/PEO/TEO electrospun mat was achieved by dip-coating the mat into a poly (MMA-co-MAA) solution with two different compositions to enhance bacteria immobilization. The morphology and diameter of CS/PEO/TEO nanofibers before and after coating were investigated by field emission scanning electron microscopy (FE-SEM). Atomic force microscopy (AFM) and water contact angle (WCA) measurements demonstrated the physical properties of coated and uncoated electrospun mats. Fourier transform infrared spectroscopy (FTIR) was further utilized to reveal the chemical structure of nanofibrous mats. The inhibition zone diameter was employed as an indicator of antibacterial activity through the disk diffusion test. The study results showed that the TEO-loaded nanofibrous mats, fabricated by an electrospinning system and coated by poly (MMA-co-MAA) at a 7:3 ratio of MMA: MAA can effectively inhibit the growth of bacteria. This novel biopolymer-based electrospun mat proved to be a promising candidate for antimicrobial packaging material due to the remarkable properties of biocompatibility, biodegradability, and excellent antibacterial performance.

Keywords

Main Subjects

Ahmed, J. (2021). Electrospinning for the manufacture of biosensor
components: A mini‐review. Medical Devices & Sensors, 4(1),
e10136.
Amna, T., Yang, J., Ryu, K.-S., & Hwang, I. (2015). Electrospun
antimicrobial hybrid mats: Innovative packaging material for
meat and meat-products. Journal of food science and technology,
52(7), 4600-4606.
Arkoun, M., Daigle, F., Heuzey, M. C., & Ajji, A. (2017). Antibacterial
electrospun chitosan‐based nanofibers: A bacterial membrane
perforator. Food Science & Nutrition, 5(4), 865-874.
Celikel, N., & Kavas, G. (2008). Antimicrobial properties of some essential
oils against some pathogenic microorganisms. Czech journal of
food sciences, 26(3), 174.
Choukourov, A., Kylián, O., Petr, M., Vaidulych, M., Nikitin, D., Hanuš, J.,
... & Biederman, H. (2017). RMS roughness-independent tuning
of surface wettability by tailoring silver nanoparticles with a
fluorocarbon plasma polymer. Nanoscale, 9(7), 2616-2625.
Deng, L., Taxipalati, M., Zhang, A., Que, F., Wei, H., Feng, F., & Zhang, H.
(2018). Electrospun chitosan/poly (ethylene oxide)/lauric arginate
nanofibrous film with enhanced antimicrobial activity. Journal of
Agricultural and Food Chemistry, 66(24), 6219-6226.
Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2017). Encapsulation of
bioactive compounds through electrospinning/electrospraying
and spray drying: A comparative assessment of food-related
applications. Drying technology, 35(2), 139-162.
Duan, B., Dong, C., Yuan, X., & Yao, K. (2004). Electrospinning of chitosan
solutions in acetic acid with poly (ethylene oxide). Journal of
Biomaterials Science, Polymer Edition, 15(6), 797-811.
Esmaeili, Y., Paidari, S., Baghbaderani, S. A., Nateghi, L., Al-Hassan, A., &
Ariffin, F. (2021). Essential oils as natural antimicrobial agents in
postharvest treatments of fruits and vegetables: a review. Journal
of Food Measurement and Characterization, 1-16.
Farahmand, E., Ibrahim, F., Hosseini, S., Rothan, H. A., Yusof, R., Koole, L.
H., & Djordjevic, I. (2015). A novel approach for application of
nylon membranes in the biosensing domain. Applied Surface
Science, 353, 1310-1319.
Fleming, I. (2011). Molecular orbitals and organic chemical reactions. John
Wiley & Sons.
Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by
electrospinning. Current Opinion in Colloid & Interface Science,
8(1), 64-75.
Göksen, G., Fabra, M. J., Pérez-Cataluña, A., Ekiz, H. I., Sanchez, G., &
López-Rubio, A. (2021). Biodegradable active food packaging
structures based on hybrid cross-linked electrospun polyvinyl
alcohol fibers containing essential oils and their application in the
preservation of chicken breast fillets. Food Packaging and Shelf
Life, 27, 100613.
Guan, X., Li, L., Li, S., Liu, J., & Huang, K. (2020). A food-grade continuous
electrospun fiber of hordein/chitosan with water resistance. Food
Bioscience, 37, 100687.
Hajikhani, M., Lin, M. (2022). A review on designing nanofibers with high
porous and rough surface via electrospinning technology for rapid
detection of food quality and safety attributes. Trends in Food
Science & Technology, 128, 118-128.
Hosseini, S., Azari, P., Farahmand, E., Gan, S. N., Rothan, H. A., Yusof, R.,
Koole, L. H., Djordjevic, I., & Ibrahim, F. (2015).
Polymethacrylate coated electrospun PHB fibers: An exquisite
outlook for fabrication of paper-based biosensors. Biosensors and
Bioelectronics, 69, 257-264.
Humphries, R., Bobenchik, A. M., Hindler, J. A., & Schuetz, A. N. (2021).
Overview of changes to the clinical and laboratory standards
institute performance standards for antimicrobial susceptibility
testing, M100. Journal of clinical microbiology, 59(12), e00213-
00221.
Karabagias, I., Badeka, A., & Kontominas, M. (2011). Shelf life extension of
lamb meat using thyme or oregano essential oils and modified
atmosphere packaging. Meat science, 88(1), 109-116.
Kayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin
inclusion complex in electrospun polyvinyl alcohol (PVA)
nanowebs: Prolonged shelf-life and high temperature stability of
vanillin. Food chemistry, 133(3), 641-649.
Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable
composites for food packaging applications: A narrative review.
Food Packaging and Shelf Life, 33, 100892.
Koushki, P., Bahrami, S. H., & Ranjbar-Mohammadi, M. (2018). Coaxial
nanofibers from poly (caprolactone)/poly (vinyl alcohol)/Thyme
and their antibacterial properties. Journal of industrial textiles,
47(5), 834-852.
Kumar, T. S. M., Kumar, K. S., Rajini, N., Siengchin, S., Ayrilmis, N., &
Rajulu, A. V. (2019). A comprehensive review of electrospun
nanofibers: Food and packaging perspective. Composites Part B:
Engineering, 175, 107074.
Lamarra, J., Calienni, M. N., Rivero, S., & Pinotti, A. (2020). Electrospun
nanofibers of poly (vinyl alcohol) and chitosan-based emulsions
functionalized with cabreuva essential oil. International Journal of
Biological Macromolecules, 160, 307-318.
Lin, L., Xue, L., Duraiarasan, S., & Haiying, C. (2018). Preparation of εpolylysine/chitosan nanofibers for food packaging against
Salmonella on chicken. Food packaging and shelf life, 17, 134-
141.
Liu, L., Liu, Z., Yang, Y., Geng, M., Zou, Y., Shahzad, M. B., ... & Qi, Y.
(2018). Photocatalytic properties of Fe-doped ZnO electrospun
nanofibers. Ceramics International, 44(16), 19998-20005.
López-Rubio, A., Sanchez, E., Wilkanowicz, S., Sanz, Y., & Lagaron, J. M.
(2012). Electrospinning as a useful technique for the
encapsulation of living bifidobacteria in food hydrocolloids. Food
Hydrocolloids, 28(1), 159-167.
Luraghi, A., Peri, F., & Moroni, L. (2021). Electrospinning for drug delivery
applications: A review. Journal of Controlled release, 334, 463-
484.
Majumder, S., Sagor, M. M. H., & Arafat, M. T. (2022). Functional
Electrospun Polymeric Materials for Bioelectronic Devices: A
Review. Materials Advances.
Mehdizadeh, T., Tajik, H., Rohani, S. M. R., & Oromiehie, A. R. (2012).
Antibacterial, antioxidant and optical properties of edible starchchitosan composite film containing Thymus kotschyanus
essential oil. Veterinary Research Forum,
Farahmand et al. JFBE 6(2): 8-16,2023
16
Nychas, G. (1995). Natural antimicrobials from plants. In New methods of
food preservation (pp. 58-89). Springer.
Pecarski, D., Knežević-Jugović, Z., Dimitrijević-Branković, S.,
Mihajilovski, K., & Janković, S. (2014). Preparation,
characterization and antimicrobial activity of chitosan
microparticles with thyme essential oil. Hemijska industrija,
68(6), 721-729.
Peranidze, K., Safronova, T. V., & Kildeeva, N. R. (2021). Fibrous polymerbased composites obtained by electrospinning for bone tissue
engineering. Polymers, 14(1), 96.
Pranoto, Y., Rakshit, S., & Salokhe, V. (2005). Enhancing antimicrobial
activity of chitosan films by incorporating garlic oil, potassium
sorbate and nisin. LWT-Food Science and Technology, 38(8),
859-865.
Rahmati, M., Mills, D. K., Urbanska, A. M., Saeb, M. R., Venugopal, J. R.,
Ramakrishna, S., & Mozafari, M. (2021). Electrospinning for
tissue engineering applications. Progress in Materials Science,
117, 100721.
Rakkapao, N., Vao-soongnern, V., Masubuchi, Y., & Watanabe, H. (2011).
Miscibility of chitosan/poly(ethylene oxide) blends and effect of
doping alkali and alkali earth metal ions on chitosan/PEO
interaction. Polymer, 52(12), 2618-2627.
Ramesh, S., Leen, K. H., Kumutha, K., & Arof, A. (2007). FTIR studies of
PVC/PMMA blend based polymer electrolytes. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 66(4-5),
1237-1242.
Rostamabadi, H., Assadpour, E., Tabarestani, H. S., Falsafi, S. R., & Jafari,
S. M. (2020). Electrospinning approach for nanoencapsulation of
bioactive compounds; recent advances and innovations. Trends in
Food Science & Technology, 100, 190-209.
Rupiasih, N. N., Aher, A., Gosavi, S., & Vidyasagar, P. (2015). Green
synthesis of silver nanoparticles using latex extract of Thevetia
peruviana: a novel approach towards poisonous plant utilization.
In Recent Trends in Physics of Material Science and Technology
(pp. 1-10). Springer.
Sadri, M., & Arab Sorkhi, S. (2017). Preparation and characterization of
CS/PEO/cefazolin nanofibers with in vitro and in vivo testing.
Nanomedicine Research Journal, 2(2), 100-110.
Sadri, M., Karimi-Nazari, E., Hosseini, H., & Emamgholi, A. (2016). New
chitosan/poly (ethylene oxide)/thyme nanofiber prepared by
electrospinning method for antimicrobial wound dressing. Journal
of Nanostructures, 6(4), 322-328.
Sameen, D. E., Ahmed, S., Lu, R., Li, R., Dai, J., Qin, W., Zhang, Q., Li, S.,
& Liu, Y. (2022). Electrospun nanofibers food packaging: Trends
and applications in food systems. Critical Reviews in Food
Science and Nutrition, 62(22), 6238-6251.
Sharma, S., Barkauskaite, S., Duffy, B., Jaiswal, A. K., & Jaiswal, S. (2020).
Characterization and antimicrobial activity of biodegradable
active packaging enriched with clove and thyme essential oil for
food packaging application. Foods, 9(8), 1117.
Sharma, S., Barkauskaite, S., Jaiswal, A. K., & Jaiswal, S. (2021). Essential
oils as additives in active food packaging. Food chemistry, 343,
128403.
Shenoy, S. L., Bates, W. D., Frisch, H. L., & Wnek, G. E. (2005). Role of
chain entanglements on fiber formation during electrospinning of
polymer solutions: good solvent, non-specific polymer–polymer
interaction limit. Polymer, 46(10), 3372-3384.
Stie, M. B., Gätke, J. R., Wan, F., Chronakis, I. S., Jacobsen, J., & Nielsen,
H. M. (2020). Swelling of mucoadhesive electrospun
chitosan/polyethylene oxide nanofibers facilitates adhesion to the
sublingual mucosa. Carbohydrate Polymers, 242, 116428.
Surendhiran, D., Li, C., Cui, H., & Lin, L. (2020). Fabrication of high
stability active nanofibers encapsulated with pomegranate peel
extract using chitosan/PEO for meat preservation. Food
Packaging and Shelf Life, 23, 100439.
Varghese, S. A., Siengchin, S., & Parameswaranpillai, J. (2020). Essential
oils as antimicrobial agents in biopolymer-based food packagingA comprehensive review. Food Bioscience, 38, 100785.
Wen, Y., Liu, J., Jiang, L., Zhu, Z., He, S., He, S., & Shao, W. (2021).
Development of intelligent/active food packaging film based on
TEMPO-oxidized bacterial cellulose containing thymol and
anthocyanin-rich purple potato extract for shelf life extension of
shrimp. Food Packaging and Shelf Life, 29, 100709.
Wu, J.-h., Hu, T.-g., Wang, H., Zong, M.-h., Wu, H., & Wen, P. (2022).
Electrospinning of PLA Nanofibers: Recent Advances and Its
Potential Application for Food Packaging. Journal of Agricultural
and Food Chemistry, 70(27), 8207-8221.
Yao, Z.-C., Chang, M.-W., Ahmad, Z., & Li, J.-S. (2016). Encapsulation of
rose hip seed oil into fibrous zein films for ambient and on
demand food preservation via coaxial electrospinning. Journal of
food engineering, 191, 115-123.
Zamani, M., Prabhakaran, M. P., & Ramakrishna, S. (2013). Advances in
drug delivery via electrospun and electrosprayed nanomaterials.
International journal of nanomedicine, 8, 2997.
Zelkó, R., Lamprou, D. A., & Sebe, I. (2019). Recent development of
electrospinning for drug delivery. In (Vol. 12, pp. 5): MDPI.
Zhang, C., Li, Y., Wang, P., & Zhang, H. (2020). Electrospinning of
nanofibers: Potentials and perspectives for active food packaging.
Comprehensive Reviews in Food Science and Food Safety, 19(2),
479-502.
Zhao, L., Duan, G., Zhang, G., Yang, H., He, S., & Jiang, S. (2020).
Electrospun functional materials toward food packaging
applications: A review. Nanomaterials, 10(1), 150.
Zhu, Z., Zhang, Y., Shang, Y., & Wen, Y. (2019). Electrospun nanofibers
containing TiO2 for the photocatalytic degradation of ethylene and
delaying postharvest ripening of bananas. Food and Bioprocess
Technology, 12(2), 281-287.